Answer:
A. Zero
Explanation:
The force on a coil of N turns, enclosing an area, A and carrying a current I in the presence of a magnetic field B, is :
F = N * I * A * B * sinθ
Where θ is the angle between the normal of the enclosed area and the magnetic field.
Since the normal of the area is parallel to the magnetic field, θ = 0
Hence:
F = NIABsin0
F = 0 or Zero
Answer:
If freshwater consumption was greater than freshwater renewal.
Explanation:
Similar to another Brainly answer :O
Answer:
It makes it lighter when its closer and heavier when its farther way.
Explanation:
Answer:
![\mathrm{v}_{2} \text { velocity after the collision is } 3.3 \mathrm{m} / \mathrm{s}](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B2%7D%20%5Ctext%20%7B%20velocity%20after%20the%20collision%20is%20%7D%203.3%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D)
Explanation:
It says “Momentum before the collision is equal to momentum after the collision.” Elastic Collision formula is applied to calculate the mass or velocity of the elastic bodies.
![m_{1} v_{1}=m_{2} v_{2}](https://tex.z-dn.net/?f=m_%7B1%7D%20v_%7B1%7D%3Dm_%7B2%7D%20v_%7B2%7D)
![\mathrm{m}_{1} \text { and } \mathrm{m}_{2} \text { are masses of the object }](https://tex.z-dn.net/?f=%5Cmathrm%7Bm%7D_%7B1%7D%20%5Ctext%20%7B%20and%20%7D%20%5Cmathrm%7Bm%7D_%7B2%7D%20%5Ctext%20%7B%20are%20masses%20of%20the%20object%20%7D)
![\mathrm{v}_{1} \text { velocity before the collision }](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B1%7D%20%5Ctext%20%7B%20velocity%20before%20the%20collision%20%7D)
![\mathrm{v}_{2} \text { velocity after the collision }](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B2%7D%20%5Ctext%20%7B%20velocity%20after%20the%20collision%20%7D)
![\mathrm{m}_{1}=600 \mathrm{kg}](https://tex.z-dn.net/?f=%5Cmathrm%7Bm%7D_%7B1%7D%3D600%20%5Cmathrm%7Bkg%7D)
![\mathrm{m}_{2}=900 \mathrm{kg}](https://tex.z-dn.net/?f=%5Cmathrm%7Bm%7D_%7B2%7D%3D900%20%5Cmathrm%7Bkg%7D)
![\text { Velocity before the collision } v_{1}=5 \mathrm{m} / \mathrm{s}](https://tex.z-dn.net/?f=%5Ctext%20%7B%20Velocity%20before%20the%20collision%20%7D%20v_%7B1%7D%3D5%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D)
![600 \times 5=900 \times v_{2}](https://tex.z-dn.net/?f=600%20%5Ctimes%205%3D900%20%5Ctimes%20v_%7B2%7D)
![3000=900 \times v_{2}](https://tex.z-dn.net/?f=3000%3D900%20%5Ctimes%20v_%7B2%7D)
![\mathrm{v}_{2}=\frac{3000}{900}](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B2%7D%3D%5Cfrac%7B3000%7D%7B900%7D)
![\mathrm{v}_{2}=3.3 \mathrm{m} / \mathrm{s}](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B2%7D%3D3.3%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D)
![\mathrm{v}_{2} \text { velocity after the collision is } 3.3 \mathrm{m} / \mathrm{s}](https://tex.z-dn.net/?f=%5Cmathrm%7Bv%7D_%7B2%7D%20%5Ctext%20%7B%20velocity%20after%20the%20collision%20is%20%7D%203.3%20%5Cmathrm%7Bm%7D%20%2F%20%5Cmathrm%7Bs%7D)
d=vi*t+(1/2)gt²
d=11 m
g=9.8 m/s²
vi=0 m/s
11 m=0 m/s*t+(1/2)9.8 m/s²t²
11 m=4.9 m/s²t²
t²=11 m / 4.9 m/s²
t=√(11 m / 4.9 m/s²)=1.489... s≈1.5 s
Answer: the time the sone is in flight is 1.5 s