The applicable relationship is N1/N2 = V1/V2, meaning the ratio of primary voltage to secondary voltage is equal to the ratio of primary turns to secondary turns.
Here N1 = 1000, V1 = 250, V2 = 400V and N2 = TBD.
Rewriting the above relationship, N2 = N1 V2/V1 = 1000 x 400/250 = 1600 turns.
Answer:
24.8m/s
Explanation:
Given data
m1= 10kg
u1=25m/s
m2=17kg
u2=16m/s
v1=10m/s
v2=??
Applying the conservation of linear momentum
m1u1+m2u2=m1v1+m2v2
substitute
10*25+17*16=10*10+17*v2
250+272=100+17v2
522=100+17v2
522-100=17v2
422=17v2
Divide both sides by 17
v2= 422/17
v2= 24.8 m/s
Hence the velocity of the red cart is 24.8m/s in the opposite direction of the blue cart
Answer:
Explanation:
The processes are described on the image attached below. The isobaric process consists of an horizontal line, the adiabatic expansion is described by a polytropic curve:

Where:


Final pressure is:



There are NO true statements on that list of choices.
Smaller cars have less momentum than bigger cars. What’s in motion stays in motion but objects with more momentum (can be from weight or from speed but in this case it’s about weight) tend to stay in motion longer.