The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge
C is placed which is the origin.
Let B be the point where the charge
C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law,
,
= 



k is the Coulomb's law constant.
On substituting the values into the above equation, we get,

Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
<u>We are given:</u>
Mass of the Steelhead(m) = 9 kg
Velocity of the Steelhead(v) = 16 m/s
<u>Calculating the Kinetic Energy:</u>
KE = 1/2mv²
replacing the variables
KE = 1/2 * 9 * (16)²
KE = 1152 Joules
Answer:

Explanation:
By Einstein's Equation of photoelectric effect we know that

here we know that
= energy of the photons incident on the metal
= minimum energy required to remove photons from metal
= kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say

here we know that

now we have

now by energy equation above when photon of 303 nm incident on the surface





The normal stress follows the formula written below:
σ = F/A
There are two types of stress, axial and tangential. Since we are only given with the dimension of the radius (and not the length), the possible stress is axial. So, the area is,
A = πr² = π(0.75 in)² = 1.767 in²
So,
σ = F/A = 500 lb/1.767 in² = <em>282.94 psi</em>
I believe the answer is 3). The cell wall provides protection, it doesn’t control movements of materials in and out of the cell.