Answer:
Explanation:
the directions may change
Or they will repel and become opposite sides
If,

then, with 3x time t, (suppose, new distance is h)




Therefore, new distance h will be 9 times bigger than distance d.
answer: c
Definitely not the last 2. My bet is on the first option. If it is wrong don't hit me please...
Answer:
a. 
b. 
c. 
Explanation:
First, look at the picture to understand the problem before to solve it.
a. d1 = 1.1 mm
Here, the point is located inside the cilinder, just between the wire and the inner layer of the conductor. Therefore, we only consider the wire's current to calculate the magnetic field as follows:
To solve the equations we have to convert all units to those of the international system. (mm→m)

μ0 is the constant of proportionality
μ0=4πX10^-7 N*s2/c^2
b. d2=3.6 mm
Here, the point is located in the surface of the cilinder. Therefore, we have to consider the current density of the conductor to calculate the magnetic field as follows:
J: current density
c: outer radius
b: inner radius
The cilinder's current is negative, as it goes on opposite direction than the wire's current.




c. d3=7.4 mm
Here, the point is located out of the cilinder. Therefore, we have to consider both, the conductor's current and the wire's current as follows:

As we see, the magnitud of the magnetic field is greater inside the conductor, because of the density of current and the material's nature.
A 15.75-g<span> piece of iron absorbs 1086.75 </span>joules<span> of </span>heat<span> energy, and its ... </span>How many joules<span> of </span>heat<span> are </span>needed<span> to raise the temperature of 10.0 </span>g<span> of </span>aluminum<span> from 22°C to 55°C, if the specific </span>heat<span> of </span>aluminum<span> is o.90 J/</span>g<span>”C2 .</span>