1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
myrzilka [38]
3 years ago
14

a package was determined to have a mass of 5.7kilograms. what's the force of gravity acting on the package on earth?(a)37.93N(b)

1.72N(c)13.44N(d)55.86N
Physics
2 answers:
Nana76 [90]3 years ago
8 0
The force of gravity on earth is 9.807 m/s^2 (or meters per second per second).
To determine the force applied, multiply the mass of the package (5.7 kg) by the force of gravity on Earth (9.807 m/s^2).
5.7 x 9.807 = 55.86 N The answer is D.

Note: the actual force is 55.89 Newtons.
bogdanovich [222]3 years ago
5 0

Answer:

Explanation:

5586

You might be interested in
A net force of 100 n is moving a mass with an acceleration of 5 m/s2. what is the mass of the object? 0.05 kg 20 kg 95 kg 500 kg
dezoksy [38]
F = ma
100n = m(5m/s^2)
100/5 = 20

6 0
3 years ago
Read 2 more answers
Assuming that Bernoulli's equation applies, compute the volume of water ΔV that flows across the exit of the pipe in 1.00 s . In
OLEGan [10]

Answer:

discharge rate (Q) = 0.2005 m^{3} / s

Explanation:

if you read the question you would see that some requirements are missing, by using search engines, you can get the complete question as stated below:

Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0m , and the elevation of points 2 and 3 is 2.00 m . The cross-sectional area at point 2 is 4.80x10-2m ; at point 3, where the water is discharged, it is 1.60x10-2m. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe. Part A Assuming that Bernoulli's equation applies, compute the volume of water DeltaV that flows across the exit of the pipe in 1.00 s . In other words, find the discharge rate \Delta V/Delta t. Express your answer numerically in cubic meters per second.

solution:

time = 1 s

elevation of point 1 (z1) = 10 m

elevation of point 2 (z2) = 2 m

elevation of point 3 (z3) = 2 m

cross section area of point 2 = 4.8 x 10^{2} m

cross section area of point 3 = 1.6 x 10^{2} m

g

acceleration due to gravity (g) = 9.8 m/s^{2}

find the discharge rate at point 3 which is the exit pipe.

discharge rate (Q) = A3 x V3

where A3 is the cross sectional area at point 3 and V3 is the velocity of the fluid and can be gotten by applying Bernoulli's equation below

\frac{P1}{ρg} +  \frac{V1^{2} }{2g} + Z1 =  \frac{P3}{ρg} + \frac{V3^{2} }{2g} + Z3

pressure at point 1 (P1) is the same as pressure at point 3 (P3), and at point 1, the velocity (V1) = 0. therefore the equation now becomes

\frac{P1}{ρg} + Z1 =  \frac{P1}{ρg} + \frac{V3^{2} }{2g} + Z3

Z1 = \frac{V3^{2} }{2g} + Z3

V3 = \sqrt{2g(Z1-Z3)}

V3 = \sqrt{2 x 9.8 x (10 - 3)}

V3 = 12.53 m/s

discharge rate (Q) = A3 x V3 = 1.6 x 10^{-2} x 12.53

discharge rate (Q) = 0.2005 m^{3} / s

8 0
3 years ago
If an object starts from rest, what is its initial velocity?
Vladimir79 [104]

Answer:

0 m/s

Explanation:

velocity= change in displacement/ time

at rest, the ball does not travel any distance

0/ t

=0

4 0
3 years ago
A series circuit contains a 9-volt battery, a 3-ohm resistor and a 2-ohm resistor. What is the voltage drop across the 2-ohm res
BARSIC [14]
Since everything in the circuit is in series .. .

-- The total resistance is  (3 + 2) = 5 ohms.

-- The voltage across the 3-ohm resistor is 3/5 of the total voltage.

-- The voltage across the 2-ohm resistor is 2/5 of the total voltage.

                  (2/5) of (9 volts)  =  18/5  =  3.6 volts .

7 0
3 years ago
Read 2 more answers
A railroad car moves under a grain elevator at a constant speed of 3.20 m/s. Grain drops into the car at the rate of 240 kg/min.
dedylja [7]

Answer:

F = 768 N                  

Explanation:

It is given that,

Speed of the elevator, v = 3.2 m/s

Grain drops into the car at the rate of 240 kg/min, \dfrac{dm}{dt}=240\ kg/min = 4\ kg/s

We need to find the magnitude of force needed to keep the car moving constant speed. The relation between the momentum and the force is given by :

F=\dfrac{dp}{dt}

F=m\dfrac{dv}{dt}+v\dfrac{dm}{dt}

Since, the speed is constant,

F=m\dfrac{dv}{dt}

F=v\dfrac{dm}{dt}

F=3.2\times 240

F = 768 N

So, the magnitude of force need to keep the car is 768 N. Hence, this is the required solution.

5 0
3 years ago
Other questions:
  • How much heat is released to freeze 47.30 grams of copper at its freezing point of 1,085°C? The latent heat of fusion of copper
    6·2 answers
  • What is a voltage source
    13·1 answer
  • If you drop a ball off a cliff, it starts out a 0 m/s. After 1 s, it will be traveling at about 10 m/s. If air resistance is rem
    10·2 answers
  • Two vectors, in three dimensions, are given in Cartesian coordinates as :
    8·1 answer
  • Which statement correctly describes the quantitative relationship between acceleration and net force on an object shown in the d
    5·1 answer
  • A 1.10-kg object slides to the right on a surface having a coefficient of kinetic friction 0.250 (Figure a). The object has a sp
    6·1 answer
  • If a wooden ball has a mass of 2.4g and a volume of 6cm3. What is it’s density?
    9·1 answer
  • I need the answer for this question
    5·1 answer
  • If you throw a ball into the air, Earth exerts a force on the ball. The ball in the air exerts no force on Earth. True or false?
    10·1 answer
  • Which water would you use to make salt dissolve the slowest?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!