Explanation:
gravitational potential energy at the top of the hill, which transforms into kinetic energy as he moves bottom of the hill
that's mean potential energy transfoms into kinetic energy
The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
20 Joules
Explanation:
Work is done whenever a force moves a body through a certain distance in the direction of the force. So, work done is the product of force and distance moved.
Therefore, we have;
Work done = Force x distance
i.e Wd = Fs
Given that: F = 20 N and s = 1 m, then;
Wd = 20 N x 1 m
= 20 Nm
The work done by the father is 20 Joules(Nm).
I think it is D. I hope this helps
Answer:
Explanation:
Given a square side loop of length 10cm
L=10cm=0.1m
Then, Area=L²
Area=0.1²
Area=0.01m²
Given that, frequency=60Hz
And magnetic field B=0.8T
a. Flux Φ
Flux is given as
Φ=BA Sin(wt)
w=2πf
Φ=BA Sin(2πft)
Φ=0.8×0.01 Sin(2×π×60t)
Φ=0.008Sin(120πt) Weber
b. EMF in loop
Emf is given as
EMF= -N dΦ/dt
Where N is number of turns
Φ=0.008Sin(120πt)
dΦ/dt= 0.008×120Cos(120πt)
dΦ/dt= 0.96Cos(120πt)
Emf=-NdΦ/dt
Emf=-0.96NCos(120πt). Volts
c. Current induced for a resistance of 1ohms
From ohms law, V=iR
Therefore, Emf=iR
i=EMF/R
i=-0.96NCos(120πt) / 1
i=-0.96NCos(120πt) Ampere
d. Power delivered to the loop
Power is given as
P=IV
P=-0.96NCos(120πt)•-0.96NCos(120πt)
P=0.92N²Cos²(120πt) Watt
e. Torque
Torque is given as
τ=iL²B
τ=-0.96NCos(120πt)•0.1²×0.8
τ=-0.00768NCos(120πt) Nm