Explanation:
The given data is as follows.
Length (l) = 2.4 m
Frequency (f) = 567 Hz
Formula to calculate the speed of a transverse wave is as follows.
f = 
Putting the gicven values into the above formula as follows.
f = 
567 Hz = 
v = 544.32 m/s
Thus, we can conclude that the speed (in m/s) of a transverse wave on this string is 544.32 m/s.
You need to use Planck's law:
E = h·υ = (h·c)/λ
Without making all the calculations, a fraction is bigger than another when the denominator is smaller. Therefore you need to find the smallest wavelength (λ) which is 450nm.
You could also be helped by colors: in order of decreasing energy, you have blue - green - yellow - red.
In any case, the correct answer is a).
<span>A. An impulse of a force changes the momentum of a body and has the same units and dimensions as momentum.</span>
A capacitor is used to receive and store electrical energy.