Just find the energy of the <span>blueviolet light with a wavelength of 434.0 nm using the formula:
E = hc / lambda
E = energy
c= speed of light = 3 x 10^8 m/s
h = planck's constant = 6.6 x 10^{-34} m^2 kg / s
lambda = 434 nm = 434 x 10^{-9} m
Putting these values (with appropriate units) in the above formula :
we get: Energy, E = 4.5 x 10^{-19} J
E = 0.45 x 10^{-18} J
Now, the </span>minimum energy is 2.18×10^-{18} J but our energy is 0.45 x 10^{-18} J which is less.
<span>Means the electron will not be removed
</span>
Answer:
2.835 moles of carbon
Explanation:
By definition, there are 6.022x10^23 atoms (or compounds) in one mole.
Write and use this as a conversion factor:
(6.022x10^23 atoms)/mole
(1.707 x 10^24 atoms of carbon)/((6.022x10^23 atoms)/mole) = 2.835 moles carbon
Answer:
Explanation:
The formula relating the mass m of a sample and the heat q to vaporize it is
q = mL, where L is the latent heat of vaporization.

Answer:
-514 kJ/mol
Explanation:
The bond enthalpy which is also known as bond energy can be defined as the amount of energy needed to split one mole of the stated bond. The change in enthalpy of a given reaction can be estimated by subtracting the sum of the bond energies of the reactants from the sum of the bond energies of the products.
For the given chemical reaction, the change in enthalpy of the reaction is:
Δ
[2(409) + 4(388) + 3(496) - 4(630) - 4(463)] kJ/mol = 818 + 1552 + 1488 - 2520 - 1852 = -514 kJ/mol
Answer:
V₂ = 236.84 mL
Explanation:
The relation between pressure and volume is inverse.
We can write it as follows :

We have,
P₁ = 360 torrs, V₁ = 750 mL, P₂ = 1.5 atm = 1140 torr.
So,

So, the new volume of the gas is 236.84 mL.