Answer: Option (d) is the correct answer.
Explanation:
An equation in which electrolytes are represented in the form of ions is known as an ionic equation.
Strong electrolytes easily dissociate into their corresponding ions. Hence, they form ionic equation.
is a strong acid and
is a strong bases, therefore, both of them will dissociate into ions.
Thus, total ionic equation will be as follows.

<span>Well, during the day, the water, as well as the surfaces surrounding the water, are heated by various thermodynamic processes: conduction, convection, radiation, etc. This in turn warms the water molecules in the lakes, streams, rivers, and oceans, thereby transferring heat (their kinetic energy) to the water molecules, which in turn receive that energy from the surrounding surfaces, or directly via radiation/insolation from the sun. When the water molecules attain enough energy, some of them attain enough energy to escape the surface of the liquid and enter the gas phase. Hence, as water is heated, more and more water molecules attain enough kinetic energy to enter the gas phase.</span>
11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
<h3>What is an ideal gas equation?</h3>
The ideal gas law (PV = nRT) relates the macroscopic properties of ideal gases. An ideal gas is a gas in which the particles (a) do not attract or repel one another and (b) take up no space (have no volume).
First, calculate the moles of the gas using the gas law,
PV=nRT, where n is the moles and R is the gas constant. Then divide the given mass by the number of moles to get molar mass.
Given data:
P= 1.3 atm
V= 6.75 Liters
n=?
R= 
T=298 K
Putting value in the given equation:


Moles = 0.3588 moles
Now,


Mass= 11.48 gram
Hence, 11.48-gram of
are needed to produce 6.75 Liters of
gas measured at 1.3 atm pressure and 298 K
Learn more about the ideal gas here:
brainly.com/question/27691721
#SPJ1
The rate at which a radioactive<span> isotope decays is measured in </span>half-life. The termhalf-life<span> is defined as the time it takes for one-</span>half<span> of the atoms of a </span>radioactive material<span> to disintegrate. </span>Half-lives<span> for </span>various radioisotopes<span> can range from a few microseconds to billions of years.
</span>.
back at it again with that answer
.
zane
Answer:
Molar mass = 103.0 g/mol,
0.728 mol NaBr
Explanation:
Molar mass M(NaBr) = M(Na) + M(Br) = 23.0 + 80.0 = 103.0 g/mol
75.0 g NaBr * 1 mol NaBr/103.0 g NaBr=0.728 mol NaBr