Answer: Rational number
Step-by-step explanation:
Let's write out the properties of rational and irrational numbers.
Rational
- Integers
- Whole numbers
- finite decimals
- repeating decimals
Irrational
------------------------------------------------------------------------------------------------------------
Looking at the list we made, we can say that -20 is a rational number. -20 is an integer and a whole number. Therefore, it is a rational number.
I believe the equation is
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
In this case, you would simplify it by adding them together.
![4 \sqrt[4]{2x} + 6 \sqrt[4]{2x}](https://tex.z-dn.net/?f=4%20%5Csqrt%5B4%5D%7B2x%7D%20%2B%206%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
=
![10 \sqrt[4]{2x}](https://tex.z-dn.net/?f=10%20%20%5Csqrt%5B4%5D%7B2x%7D%20)
And can even be changed to an exponential equation:
Answer:
32 tiles
Step-by-step explanation:
32+0.69*n= 32.69
32.69*n= 32.69n-0.69
=32
The Factor Theorem says (x - a) is a factor of function p(x) if p(a)=0
so check for p(-2)
= -2^4 +3(-2)^3 + 4(-2)^2 - 8
= 16 - 24 +16 -8
= 0
so (x + 2) is a factor
Angle BOC = 120
PROOF
Angle A + Angle B + Angle C = 180
So, Angle B + Angle C = 120 (Angle A = 60)
Now 1/2 (Angle B + Angle C) = 60
1/2 Angle B + 1/2 Angle C = 60..............i
In triangle BOC
1/2 Angle B + 1/2 Angle C + Angle BOC =180
(BO and CO are angle bisectors)
Or 60 + Angle BOC = 180 (using i)
OR ANGLE BOC = 120