Answer:
did not match any documents.
Suggestions:
Make sure all words are spelled correctly.
Try different keywords.
Try more general keywords.
Try fewer keywords.
Explanation:
Answer:
Electrons in a metal that aren't bonded with only one atom
ALL organic molecules have carbon.
Hope this helps :)
Answer:
Ok to solve this you will need to use the Ideal Gas Law Formula which is as follows:
PV = nRT
P= pressure
V= volume
n= # of moles
R= Universal Gas Constant (0.0821 L x atm/mol x K)
T= Kelvin temperature
1.Simplify the Ideal Gas Law formula to what you need to solve for:
P = (nRT)/ V
2. List all you components as follows (this makes the process easier):
P = ?
V = 45.4 L
n = 0.625 mol
R = 0.0821 L x atm/ mol x K
T = 249 K
To find the Kelvin temperature K = C + 273
3. Plug in all your components in your set up formula:
P = [(0.625 mol)(0.0821 L x atm/ mol x K)(249 K)] / (45.4 L)
4. Cross out all similar units so the only thing left is atm because you are trying to find pressure.
P = [(0.625)(0.0821atm)(249)] / (45.4)
5. Multiply through and simplify
P = 0.28 atm
B. is the correct answer.
Glad I could help!! If you have any other questions just message me. Hopefully this was helpful.
Explanation:
Answer:
C is the element thats has been oxidized.
Explanation:
MnO₄⁻ (aq) + H₂C₂O₄ (aq) → Mn²⁺ (aq) + CO₂(g)
This is a reaction where the manganese from the permanganate, it's reduced to Mn²⁺.
In the oxalic acid, this are the oxidation states:
H: +1
C: +3
O: -2
In the product side, in CO₂ the oxidation states are:
C: +4
O: -2
Carbon from the oxalate has increased the oxidation state, so it has been oxidized.