Answer:
(a) α = -0.16 rad/s²
(b) t = 33.2 s
Explanation:
(a)
Applying 3rd equation of motion on the circular motion of the tire:
2αθ = ωf² - ωi²
where,
α = angular acceleration = ?
ωf = final angular velocity = 0 rad/s (tire finally stops)
ωi = initial angular velocity = 5.45 rad/s
θ = Angular Displacement = (14.4 rev)(2π rad/1 rev) = 28.8π rad
Therefore,
2(α)(28.8π rad) = (0 rad/s)² - (5.45 rad/s)²
α = -(29.7 rad²/s²)/(57.6π rad)
<u>α = -0.16 rad/s²</u>
<u>Negative sign shows deceleration</u>
<u></u>
(b)
Now, we apply 1st equation of motion:
ωf = ωi + αt
0 rad/s = 5.45 rad/s + (-0.16 rad/s²)t
t = (5.45 rad/s)/(0.16 rad/s²)
<u>t = 33.2 s</u>
v = average speed of movement of the Southwest Indian Ridge = 20 mm/year
d = distance moved by the Southwest Indian Ridge = 100 mm
t = number of years required to move distance "d"
distance traveled is given as
d = v t
inserting the above values in the formula
100 mm = (20 mm/year) t
dividing both side by 20 mm/year
t = 100 mm/(20 mm/year)
t = 5 years
A simple machine can make work easier by reduce the amount of energy needed to perform a task, therefore, B. <span>it magnifies the potential energy so that the kinetic energy is greater</span> is the correct answer.
Atmosphere
Atmospheric gas from prehistoric eras is found trapped in glaciers in the form of bubbles. These gas bubbles are the basis of studying ice cores as they provide us with accurate estimates of the conditions of past climates. The bubbles allow us to determine the composition of atmospheric air, such as the carbon dioxide and methane concentrations, as well as allow us to determine air temperatures in the past.