Answer:
The correct alternative is "Option a".
Explanation:
Oxidation has become a mechanism whereby the physicochemical properties transform attributed to the formation of O₂.
- The connection involving magnesium as well as O₂ requires the oxidation of the component named magnesium.
- Even before exposed to the air, silicon is oxidized as well as generates silicon dioxide.
Other possibilities are not connected to the scenario in question. So Choice A is the best option.
It would be the water based carbon cycle
Answer:
0.73L
Explanation:
The following data were obtained from the question :
V1 = 0.65 L
P1 = 3.4 atm
T1 = 19°C = 19 + 273 = 292K
V2 =?
P2 = 3.2 atm
T2 = 36°C = 36 + 273 = 309K
The bubble's volume near the top can be obtain as follows:
P1V1 /T1 = P2V2 /T2
3.4 x 0.65/292 = 3.2 x V2 /309
Cross multiply to express in linear form as shown below:
292 x 3.2 x V2 = 3.4 x 0.65 x 309
Divide both side by 292 x 3.2
V2 = (3.4 x 0.65 x 309) /(292 x 3.2)
V2 = 0.73L
Therefore, the bubble's volume near the top is 0.73L
Answer:
D. 1.48atm
Explanation:
Van der waals equation is given as:
(P +an²/v²) (v - nb) = nRT
Where;
P = pressure (atm)
V = volume (L)
R = gas constant (0.0821 Latm/molK)
a and b = gas constant specific to each gas
T = temperature (K)
n = number of moles
According to the given information; V = 22.4L, T = 0.00°C (273.15K), R = 0.0821 Latm/molK, a = 6.49L^2-atm/mol^2, b = 0.0562 L/mol, n = 1.5mol
Hence;
(P + 6.49 × 1.5²/22.4²) (22.4 - 1.5×0.0562) = 1.5 × 0.0821 × 273.15
(P + 6.49 × 2.25/501.76) (22.4 - 0.0843) = 33.638
(P + 0.0291) (22.316) = 33.638
22.316P + 0.649 = 33.638
22.316P = 33.638 - 0.649
22.316P = 32.989
P = 32.989/22.316
P = 1.478
P = 1.48atm