Answer: When the car speed triples, momentum also triples but Kinetic energy increases 9 times or by 9 fold.
Explanation:
The momentum of a car (an object) is
p= mv
where
m is =the mass of the object( in this case car)
v is its= velocity
While the kinetic energy is is given by the formulae
K=1/2mv²
To determine how momentum and kinetic energy of the car changes when the speed of the object triples, We have that the new velocity,
v¹= 3v
So that the momentum change becomes
p¹=mv¹=m (3v)= 3mv
mv=p
therefore p¹= 3p
we can see that the momentum also triples.
And the kinetic energy change becomes
K¹=1/2m(v¹)²= 1/2m (3v)²
= 1/2m9v²= 1/2 x m x 9 x v²=9 x1/2mv²
1/2mv²=K
K¹= Kinetic energy = 9k
but Kinetic energy increases 9 times
Not 100% sire but I think it'd be Yellow since we see red and green light together as Yellow
To solve this problem, we are going to use the formula for
work which is Fd where x and y are measured separately.
X direction: W = 13.5 x 230 = 3105 Joules
Y direction: W = -14.3 x -165 = 2360 Joules
So the total work is getting the sum of the two: 3105 + 2360
= 5465 Joules
Answer:
196000 N
Explanation:
The following data were obtained from the question:
Height (h) = 10 m
Area (A) = 2 m²
Force (F) =.?
Next, we shall determine the pressure in the tank.
This can be obtained as follow:
P = dgh
Where
P is the pressure.
d is the density of the liquid.
g is acceleration due to gravity
h is the height.
Height (h) = 10 m
Density (d) of water = 1000 kg/m³
Acceleration due to gravity (g) = 9.8 m/s²
Pressure (P) =...?
P = dgh
P = 1000 × 9.8 × 10
P = 98000 N/m²
Therefore, the pressure acting on the tank is 98000 N/m²
Finally, we shall determine the force of gravity acting on the column of water as follow:
Area (A) = 2 m²
Pressure (P) = 98000 N/m²
Force (F) =.?
Pressure (P) = Force (F) /Area (A)
P = F /A
98000 = F/ 2
Cross multiply
F = 98000 × 2
F = 196000 N
Therefore, the force of gravity acting on the column of water is 196000 N
The first law of thermodynamics states that energy cannot be created nor destroyed. It can be transformed from one form of energy to another, but the energy in an isolated system remains constant.
The answer then would be letter B. False.