The coefficient of static friction between the chair and the floor is 0.67
Explanation:
Given:
Weight of the chair = 25kg
Force = 165 N (F_applied)
Force = 127 N (F_max)
To find: Coefficient of static friction
The “coefficient of static friction” between a chair and the floor is defined as the ration of maximum force to the normal force acting on the chair
μ_s=
The F_n is equal to the weight multiplied by its gravity
∴
=mg
Thus the coefficient of static friction changes as
μ_s=
μ_{s} = 
= 0.67
Answer:c-The gravitational effect when spacecraft flies close to the asteriod
Explanation:
Gravitational effect on the spacecraft gives an estimate that how big is the asteroid by experiencing its gravitational pull.
The amount of extra thrust required to maintain the trajectory of the spacecraft during its motion hints at the scientist about the size of the asteroid.
Gravitational pull is directly proportional to the mass of object so greater the mass, greater will be the pull.
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Impulse delivered to the ball</h3>
According to the Impulse-Momentum theorem we have the following:
(1)
Where:
is the impulse
is the change in momentum
is the final momentum of the ball with mass
and final velocity (to the right) 
is the initial momentum of the ball with initial velocity (to the left) 
So:
(2)
(3)
(4)
(5)
<h3>b) Time </h3>
This time can be calculated by the following equations, taking into account the ball undergoes a maximum compression of approximately
:
(6)
(7)
Where:
is the acceleration
is the length the ball was compressed
is the time
Finding
from (7):
(8)
(9)
(10)
Substituting (10) in (6):
(11)
Finding
:
(12)
<h3>c) Force applied to the ball by the bat </h3>
According to Newton's second law of motion, the force
is proportional to the variation of momentum
in time
:
(13)
(14)
Finally:

Answers:
1A) Al203
1B) SF6
2) Fe203 - iron oxide
Answer:
Jim's kinetic energy is 54.67 J.
Explanation:
Given that,
Mass, m = 15 kg
Velocity, V = 2.7 m/s
We need to find the Jim's kinetic energy. We know that when the object is in motion, it has kinetic energy. This energy is given by :


E = 54.67 J
So, Jim's kinetic energy is 54.67 J. Hence, this is the required solution.