Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
As soon as you let go of it it is at its max speed because gravity is constantly pulling it down
A path of inferences guided to be cherry picked as for which ones were reasonable and which ones had no ability in the real world to sustain in scientific law
True because school doesn't dictate what job you want in the future
Answer:
The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.
Explanation:
To answer this question, let's write Newton's second law of the two axes
Y Axis
Fy + N - W = 0
Fy + N = W
X axis
Fx - fr = 0
Fx = fr
The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.
The direction of this force is along the length of the rods that are in an Angle, where the x and y components of the force come from
In general this force is small because the rubbing of the skis is small