The time taken to hit the ground is 3.9 s, the range is 18m and the final velocity is 42.82 m/s
<h3>
Motion Under Gravity</h3>
The motion of an object under gravity is the vertical motion of the object under the influence of acceleration due to gravity.
Given that a ball is thrown horizontally from the roof of a building 75 m tall with a speed of 4.6 m/s.
a. how much later does the ball hit the ground?
The time can be calculated by considering the vertical component of the motion with the use of formula below.
h = ut + 1/2gt²
Where
- Initial velocity u = 0 ( vertical velocity )
- Acceleration due to gravity g = 9.8 m/s²
Substitute all the parameters into the formula
75 = 0 + 1/2 × 9.8 × t²
75 = 4.9t²
t² = 75/4.9
t² = 15.30
t = √15.3
t = 3.9 s
b. how far from the building will it land?
The range can be found by using the formula
R = ut
Where u = 4.6 m/s ( horizontal velocity )
R = 4.6 × 3.9
R = 18 m
c. what is the velocity of the ball just before it hits the ground?
The final velocity will be
v = u + gt
v = 4.6 + 9.8 × 3.9
v = 4.6 + 38.22
v = 42.82 m/s
Therefore, the answers are 3.9 s, 18 m and 42.82 m/s
Learn more about Vertical motion here: brainly.com/question/24230984
#SPJ1
It would take more energy to reheat 12 cups because only 1 or 2 cups can fit in a microwave rather an than brewing 12 cups in a coffee pot.
Answer:
b) 4781 N
Explanation:
Because there is a redius do this question is talking about the acceleration force which= mv^2/r
so a=15^2/80=2.8125 m^2/s
so the force will be = m.a
F =1700×2.8125=4781.25 N
Answer: because of air resistance. See explanation for further details.
Explanation: Galileo performed an experiment to proof that the time of descent of two different masses is independent of time.
But in reality this is most likely not true because of air resistance and other fluid frictional effects in consideration.
If the experiment is performed in a vacuum, it will always be true that time is independent of masses of two falling objects.