Answer:
An electron tube from which all air has been removed. The vacuum ensures transparency inside the tube for electric fields and moving electrons. Most electron tubes are vacuum tubes; cathode-ray tubes, which include television picture tubes and other video display tubes, are the most widely used vacuum tubes
Explanation:
hope it help
Answer:
The slower runner is 1.71 km from the finish line when the fastest runner finishes the race.
Explanation:
Given;
the speed of the slower runner, u₁ = 11.8 km/hr
the speed of the fastest runner, u₂ = 15 km/hr
distance, d = 8 km
The time when the fastest runner finishes the race is given by;

The distance covered by the slower runner at this time is given by;
d₁ = u₁ x 0.533 hr
d₁ = 11.8 km/hr x 0.533 hr
d₁ = 6.29 km
Additional distance (x) the slower runner need to finish is given by;
6.29 km + x = 8km
x = 8 k m - 6.29 km
x = 1.71 km
Therefore, the slower runner is 1.71 km from the finish line when the fastest runner finishes the race.
<span>A. No sound is heard
A*sin(wt)+(-A)*sin(wt)=0 - no sound
</span>
At the initial state: v1 = vf = 0.001053 m
3
/kg, h1 = hf = 467.11 kJ/kg, and s1 = sf = 1.4336 kJ/kgK.
The mass of the water is: m = V/v1 = 0.005/0.001053 = 4.7483 kg.
To find the final state, we will use the First Law:
Q12 = m(h2 - h1) for closed system undergoing a constant pressure process.
h2 = 1Q2/m + h1 = 2200/4.7483 + 467.11 = 930.43 kJ/kg.
At P2 = P1 = 150 kPa, this is a saturated mixture.
hf = 467.11 kJ/kg, hfg = 2226.5 kJ/kg, sf = 1.4336 kJ/kgK, and sfg = 5.7897 kJ/kgK
s2 = sf + sfg (h2 – hf )/hfg = 1.4336 + 5.7897(930.43 – 467.11)/2226.5 = 2.6384 kJ/kgK.
The entropy change of water is:
Delta Ssys= m(s2 – s1) = 4.7483(2.6384 – 1.4336) = 5.72 kJ/K.