Answer:
is a field force, as gravity does not physically apply force and does not require proximity.
Explanation:
Answer:
g_x = 3.0 m / s^2
Explanation:
Given:
- Change in length of spring [email protected] = 22.6 cm
- Time taken for 11 oscillations t = 19.0 s
Find:
- The value of gravitational free fall g_x at plant X:
Solution:
- We will assume a simple harmonic motion of the mass for which Time is:
T = 2*pi*sqrt(k / m ) ...... 1
- Sum of forces in vertical direction @equilibrium is zero:
F_net = k*x - m*g_x = 0
(k / m) = (g_x / x) .... 2
- substitute Eq 2 into Eq 1:
2*pi / T = sqrt ( g_x / x )
g_x = (2*pi / T )^2 * x
- Evaluate g_x:
g_x = (2*pi / (19 / 11) )^2 * 0.226
g_x = 3.0 m / s^2
Refer to the diagram shown below.
The basket is represented by a weightless rigid beam of length 0.78 m.
The x-coordinate is measured from the left end of the basket.
The mass at x=0 is 2*0.55 = 1.1 kg.
The weight acting at x = 0 is W₁ = 1.1*9.8 = 10.78 N
The mass near the right end is 1.8 kg.
Its weight is W₂ = 1.8*9.8 = 17.64 N
The fulcrum is in the middle of the basket, therefore its location is
x = 0.78/2 = 0.39 m.
For equilibrium, the sum of moments about the fulcrum is zero.
Therefore
(10.78 N)*(0.39 m) - (17.64 N)*(x-0.39 m) = 0
4.2042 - 17.64x + 6.8796 = 0
-17.64x = -11.0838
x = 0.6283 m
Answer: 0.63 m from the left end.
The length of the wire is 36 m.
<u>Explanation:</u>
Given, Diameter of sphere = 6 cm
We know that, radius can be found by taking the half in the diameter value. So,

Similarly,

We know the below formulas,


When equating both the equations, we can find length of wire as below, where 


The
value gets cancelled as common on both sides, we get

The
value gets cancelled as common on both sides, we get
