Answer:
The magnitude of force is 1593.4N
Explanation:
The sum of the horizontal components of the friction and the normal force will be equal to the centripetal force on the car. This can be represented as
fcostheta + Nsintheta = mv^2/r
Where F = force of friction
Theta = angle of banking
N = normal force
m = mass of car
v = velocity of car
r = radius of curve
The car has no motion in the vertical direction so the sum of forces = 0
The vertical component of the normal force acts upwards whereas the weight of the car and the vertical component friction acts downwards.
Taking the upward direction to be positive,rewrite the equation above to get:
Ncos thetha = mg - fsintheta =0
Ncistheta = mg + fain theta
N = mg/cos theta + sintheta/ costheta
fcostheta +[mg/costheta + ftan theta] sin theta = mv^2/r
Substituting gives:
f = (1/(costheta + tanthetasintheta) + mgtantheta = mv^2/r - mgtantheta)
Substituting given values into the above equation
f = 1/(cos25 + tan 25 )(sin25)[ 600×30/120 - (600×9.81)tan
f = 1593.4N25
Answer:
X-rays travel through space faster than radio waves.
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:

Electromagnetic waves are classified into 7 different types, according to their wavelength/frequency. From shortest to longest wavelength (and so, from highest to lowest frequency), we have:
Gamma rays
X rays
Ultraviolet
Visible light
Infrared radiation
Microwaves
Radio waves
Now we can analyze the 4 statements:
X-rays and radio waves are both forms of light, or electromagnetic radiation --> TRUE. They are both types of electromagnetic waves.
X-rays have higher frequency than radio waves. --> TRUE, as we can see from the table above.
X-rays have shorter wavelengths than radio waves. --> TRUE, as we can see from the table above.
X-rays travel through space faster than radio waves. --> FALSE: all electromagnetic waves travel in space at the same speed, the speed of light.
When Jane is sliding down a slide, she is demonstrating translational motion.
The answer is, "B", "Ammonia".