When acids react with water, H ions are released which then combine with water molecules to form H₃O⁺
The answer for this issue is:
The chemical equation is: HBz + H2O <- - > H3O+ + Bz-
Ka = 6.4X10^-5 = [H3O+][Bz-]/[HBz]
Let x = [H3O+] = [Bz-], and [HBz] = 0.5 - x.
Accept that x is little contrasted with 0.5 M. At that point,
Ka = 6.4X10^-5 = x^2/0.5
x = [H3O+] = 5.6X10^-3 M
pH = 2.25
(x is without a doubt little contrasted with 0.5, so the presumption above was OK to make)
Answer:
47911.1 pa
Explanation:
The SI base unit of pressure is pascal, which is N/m^2.
2200 kg is 2200*9.8=21560 N, and 4500 cm^2=4500/10000=0.45 m^2.
So the total pressure exerted on the ground (!!) is 21560/0.45= 47911.1 Pa.
Answer:
Rate = k . [B]² . [C]
Explanation:
The dependence of the reaction rate on the concentration of the reactants is given by the reaction order of each one, as shown in the rate equation.
![Rate=k.[A]^{x} .[B]^{y} .[C]^{z}](https://tex.z-dn.net/?f=Rate%3Dk.%5BA%5D%5E%7Bx%7D%20.%5BB%5D%5E%7By%7D%20.%5BC%5D%5E%7Bz%7D)
where,
k is the rate constant
x, y, z are the reaction orders.
- <em>The rate of reaction is not affected by changing the concentration of species A.</em> This means that the reaction order for A is x = 0 since when its concentration changes, the rate stays the same.
- <em>Leaving all other factors identical, doubling the concentration of species B increases the rate by a factor of 4.</em> This means that the reaction order for B is y = 2, so when the concentration is doubled, the new rate is 2² = 4 times the initial rate.
- The rate of the reaction is linearly dependent on the concentration of C. This means that the reaction order for C is z = 1, that is, a linear dependence.
All in all, the rate equation is:
Rate = k . [B]² . [C]
Explanation:
equations to note:
density= mass/volume
mass= volume *density
volume= mass/density
you have a volume- 8.33cm3
you have a density- 2.07 g/cm3
Answer:
8.33cm3 * 2.07g/cm3= 17.24g
mass= 17.24g