Answer:
The answer is 18 N.
Explanation:
A force can be divided into components x and y components. The component along the x-axis is called the horizontal component and along the y-axis is called the vertical component. In this case, as the force is in a horizontal direction and is also known as x-component of force. The x- component of force is
Fx = Fcosθ
Fx = 22(cos 35°)
Fx = 22 x 0.819
Fx = 18 N
Child's horizontal pull forces are equal to that of frictional resistance force on the wagon.
Explanation:
The Coriolis effect happens when an entity is perceived from a moving reference frame going in a straight path. The changing reference frame makes the object appear as if it were moving along a curved road.
Circulation is counter-clockwise in the northern hemisphere. Circulation is clockwise in the southern hemisphere, and it is the equator, it is straight down without circulation.
Photon energy is directly proportional to the frequency of electromagnetic radiation.
(That would also mean that it's inversely proportional to the wavelength.)
So the photon energy increases as you scan the chart of visible colors
moving from the red end of the rainbow to the blue end.
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
Answer:
a. 4.9 m
Explanation:
To solve this problem we must take into account that power is defined as the relationship between the work and the time in which the work is done.
P = W/t
where:
P = power = 95 [W] (units of watts)
W = work [J] (units of Joules)
t = time = 6.2 [s]
We can clear the work from the previous equation.
W = P*t
W = 95*6.2 = 589 [J]
Now we know that the work is defined by the product of the force by the distance, therefore we can express the work done with the following equation.
W = F*d
where:
F = force = 120 [N] (units of Newtons)
d = distance [m]
d = W/F
d = 589/120
d = 4.9 [m]