initial velocity of the car given as

final velocity is given as

as we know that

now we can convert final speed into m/s

now acceleration is rate of change in velocity



so the acceleration of the car is 3 m/s^2
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer:
v = 1.98 mph
Explanation:
Given that,
Speed to travel one mile is 100 mph
Speed to travel another mile is 1 mph
The formula used to find your average speed is given by :

Putting the values, we get :

v = 1.98 mph
So, yours average speed is 1.98 mph.
Answer:
500 m
Explanation:
t = Time taken
u = Initial velocity = 50 m/s
v = Final velocity = 0
s = Displacement
a = Acceleration = -2.5 m/s²
Equation of motion

Time taken by the train to stop is 20 seconds

∴ The engineer applied the brakes 500 m from the station
Respuesta:En la astenosfera existen lentos movimientos de convección que explican la deriva continental. Además, el basalto de la astenosfera fluye por extrusión a lo largo de las dorsales oceánicas, lo cual hace que se renueve y expanda constantemente el fondo oceánico. :D