Answer:
0.595 M
Explanation:
The number of moles of water in 1L = 1000g/18g/mol = 55.6 moles of water.
Mole fraction = number of moles of KNO3/number of moles of KNO3 + number of moles of water
0.0194 = x/x + 55.6
0.0194(x + 55.6) = x
0.0194x + 1.08 = x
x - 0.0194x = 1.08
0.9806x= 1.08
x= 1.08/0.9806
x= 1.1 moles of KNO3
Mole fraction of water= 55.6/1.1 + 55.6 = 0.981
If
xA= mole fraction of solvent
xB= mole fraction of solute
nA= number of moles of solvent
nB = number of moles of solute
MA= molar mass of solvent
MB = molar mass of solute
d= density of solution
Molarity = xBd × 1000/xAMA ×xBMB
Molarity= 0.0194 × 1.0627 × 1000/0.981 × 18 × 0.0194×101
Molarity= 20.6/34.6
Molarity of KNO3= 0.595 M
Answer:
Heat required = 13,325 calories or 55.75 KJ.
Explanation:
To convert a water to steam at 100 degree celsius to vapor, we have to give latent heat of vaporization to water
Which equals ,
Q = mL,
Where, m is the mass of water present
L = specific latent heat of vaporization
Here , m= 25 gram
L equals to 533 calories (or 2230 Joules)
So, Q = 25×533 = 13,325 Calories
Or , Q = 55,750 Joules = 55.75 KJ
so, Heat required = 13,325 calories or 55.75 KJ.
Answer:
Explanation:
The melting of the chocolate pieces one by one showed that it was caused by heat flowing through the foil bridge. The transfer of heat happened between the foil bridge and the chocolate pieces because they were touching each other.
Answer:
Si las condiciones para que el magma permanezca líquido no perduran, el magma se enfriará y solidificará en una roca ígnea. Una roca que se enfría en el interior de la Tierra se denomina intrusiva o plutónica y su enfriamiento será muy lento, produciendo una estructura cristalina de granos grueso.
Explanation: