Answer:
The final temperature of the solution is 44.8 °C
Explanation:
assuming no heat loss to the surroundings, all the heat of solution (due to the dissolving process) is absorbed by the same solution and therefore:
Q dis + Q sol = 0
Using tables , can be found that the heat of solution of CaCl2 at 25°C (≈24.7 °C) is q dis= -83.3 KJ/mol . And the molecular weight is
M = 1*40 g/mol + 2* 35.45 g/mol = 110.9 g/mol
Q dis = q dis * n = q dis * m/M = -83.3 KJ/mol * 13.1 g/110.9 gr/mol = -9.84 KJ
Qdis= -9.84 KJ
Also Qsol = ms * Cs * (T - Ti)
therefore
ms * Cs * (T - Ti) + Qdis = 0
T= Ti - Qdis * (ms * Cs )^-1 =24.7 °C - (-9.84 KJ/mol)/[(104 g + 13.1 g)* 4.18 J/g°C] *1000 J/KJ
T= 44.8 °C
When the block of iron is placed in water the volume of water that is displaced is 27.0 cm³
<u><em> calculation</em></u>
The volume water that is displaced is equal to volume of block of the iron
volume of block of iron = length x width x height
length= 3 cm
width = 3 cm
height = 3 cm
volume is therefore = 3 cm x 3 cm x 3 cm = 27 cm³ therefore the volume displaced = 27 cm³ since the volume of water displaced is equal to volume of block.
Answer:
12.
1 + 2 + 1 = 4 + 1 + 2 + 1 + 4 = 12 = 4 + 1 + 2 + 1 + 4 = 1 + 2 + 1
Answer:
Compositional Layers
The Earth has different compositional and mechanical layers. Compositional layers are determined by their components, while mechanical layers are determined by their physical properties. The outermost solid layer of a rocky planet or natural satellite.
It reproduces inside living cells.