Answer:
2.09 atm
Explanation:
Step 1: Given and required data
- Volume of the vessel (V): 25.0 L
We won't need the data of water and uncombusted fuel, since the partial pressures are independent of each other.
Step 2: Calculate the number of moles (n) corresponding to 60.0 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
60.0 g × 1 mol/44.01 g = 1.36 mol
Step 3: Calculate the partial pressure of CO₂
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T/ V
P = 1.36 mol × (0.0821 atm.L/mol.K) × 468.2 K/ 25.0 L = 2.09 atm
4 moles of sodium because you originally have 2.0 moles of Na2SO4 and you set that up at the beginning of the (what we called) train tracks. Then diagonally from that, on the bottom you put 1 mol of Na2SO4 to cancel the units. Then above that you have 2 moles of sodium because that is how many there are in the equation that they gave (the Na2 part). Then its just like a fraction, you multiply the top by the top and the bottom by the bottom, which would give you 4moles/1 or just 4 moles Na. I hope that helps
Answer:
0.56M of acetate ions
Explanation:
Given parameters:
Mass of Ba(C₂H₃O₂)₂ = 69g
Volume of water = 970mL = 0.97dm³
Molar mass of Ba(C₂H₃O₂)₂ = 255.415g/mol
Unknown:
Concentration of acetate ion in the final solution = ?
Solution:
Let us represent the dissociation;
Ba(C₂H₃O₂)₂ = Ba²⁺ + 2C₂H₃OO⁻
We see that 1M of will produce 2M of acetate ions
Now, let us find the molarity of the barium acetate;
Molarity = 
Number of moles of Ba(C₂H₃O₂)₂ = 
Number of moles =
= 0.27moles
Molarity of Ba(C₂H₃O₂)₂ =
= 0.28M
since 1M of Ba(C₂H₃O₂)₂ will produce 2M of acetate ions
0.28M of Ba(C₂H₃O₂)₂ will produce 2 x 0.28 = 0.56M of acetate ions
Whiskers and beaks
are two examples of _____. electroreceptors mechanoreceptors olfactory
receptors photoreceptors
Whiskers and beaks
are two examples of olfactory receptors. An olfactory receptor is a smell
receptor that contains a protein capable of binding odor molecules that plays
the central role of smell.