You need to divide the motion into its component: vertical and horizontal motion.
The time taken to fall vertically from the cliff is equal to the time taken to move horizontally.
Using the vertical component, which is an accelerated motion with an initial velocity equal to zero, we can solve for t:
h = 1/2 · g · t²
t = √(2·h / g)
= √(2·50 / 9.8)
= 3.2 s
Horizontally, it is a constant motion:
d = v · t
= 20 · 3.2
= 64 m
The ball will strike the ground at a distance of 64 meters from the cliff.
Its letter C. 5N to the left. Since Jeremy's force in Newtons are higher than Amanda's (in newtons), and since Jeremy's force directs to the left, then the direction of the force will be to the LEFT. Then subtract the higher one to the lower one so that would be: 10N-5N=5N. So it is C. 5N to the left.
Answer:
Answered
Explanation:
a) What is the work done on the oven by the force F?
W = F * x
W = 120 N * (14.0 cos(37))
<<<< (x component)
W = 1341.71
b) 

= 29.4 N


W_f= 328.72 J = 329 J
c) increase in the internal energy
U_2 = mgh
= 12*9.81*14sin(37)
= 991 J
d) the increase in oven's kinetic energy
U_1 + K_1 + W_other = U_2 + K_2
0 + 0 + (W_F - W_f ) = U_2 + K_2
1341.71 J - 329 J - 991 J = K_2
K_2 = 21.71 J
e) F - F_f = ma
(120N - 29.4N ) / 12.0kg = a
a = 7.55m/s^2
vf^2 = v0^2 + 2ax
vf^2 = 2(7.55m/s)(14.0m)
V_f = 14.5396m/s
K = 1/2(mv^2)
K = 1/2(12.0kg)(14.5396m/s)
K = 87.238J
Explanation:
The net force along the horizontal direction is

where f is the frictional force. We can find the frictional force by looking at the vertical forces acting on the couch:

From the definition of frictional force,


Therefore, the net force on the couch is
