Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.
D.all of the above is the answer for this question
Answer:
The angle through which the wheel turned is 947.7 rad.
Explanation:
initial angular velocity,
= 33.3 rad/s
angular acceleration, α = 2.15 rad/s²
final angular velocity,
= 72 rad/s
angle the wheel turned, θ = ?
The angle through which the wheel turned can be calculated by applying the following kinematic equation;

Therefore, the angle through which the wheel turned is 947.7 rad.