Answer:
2.56 m/s²
Explanation:
A standing wave is produced in the wire, its frequency f = n/2l√(T/μ). For the fundamental frequency, n = 1.
f = 1/2l√(T/μ)
where l = length of wire = 1.60 m, T₁ = tension in wire = weight of object = m₁g (neglecting wires mass), m₁ = mass of object = 3.00 kg, g = acceleration due to gravity on the small planet, μ = linear density of wire = m₀/l , m₀= mass of wire = 4.30 g = 0.0043 kg and f = 1/T where T = period of pulse = 59.9 ms = 0.0599 s
f = 1/2l√(T₀/μ) = 1/T ⇒ T₁ = 4l²μ/T²
m₁g = 4l²μ/T²
g = 4l²μ/m₁T² = 4l²m₀/l/m₁T² = 4lm₀/m₁T²
g = 4lm₀/m₁T² = 4 × 1.60 × 0.0043/(3.00 × 0.0599²) = 2.56 m/s²
Answer:
the volume decreases at the rate of 500cm³ in 1 min
Explanation:
given
v = 1000cm³, p = 80kPa, Δp/t= 40kPa/min
PV=C
vΔp + pΔv = 0
differentiate with respect to time
v(Δp/t) + p(Δv/t) = 0
(1000cm³)(40kPa/min) + 80kPa(Δv/t) = 0
40000 + 80kPa(Δv/t) = 0
Δv/t = -40000/80
= -500cm³/min
the volume decreases at the rate of 500cm³ in 1 min
Answer:
At the end of the handle farthest from the head of the hammer.
Explanation:
The force of the hammer is greatest the longer the radius is on a which would be the length of the handle. Simple mechanical advantage.
If blonde is 'b' and brown is 'B', the parents could have both been Bb; therefore resulting in a 1/4 chance of John being blonde
Octopus
1. Octopus/Squid. These similar creatures are both cephalopods and have three hearts in total, one systematic to go along with two “gill hearts” that force blood to the gills.
Hope This Helps! Have a Nice Day!!