Answer:
i. 0.2 N ii. 30°
Explanation:
(i) Calculate the magnitude and direction of force on X, when a current of 4A is passed through it.
The magnetic force F = BILsinФ where B = magnetic field strength = 0.1 T, I = current = 4 A and L= length of conductor = 0.5 m. Since the conductor X of length 0.5m is held along the positive X-axis and situated in a uniform horizontal magnetic field of 0.1T which is pointing towards the positive Y-axis, both B and L are perpendicular to each other. So, Ф = 90°
So, F = BILsinФ
F = 0.1 T × 4 A ×0.5 m × sin90°
F = 0.1 T × 4 A ×0.5 m × 1
F = 0.2 N
(ii) Through what angle must X be turned in a vertical plane so that the force on X is halved
If F' = BILsinФ' where Ф'=the new angle, and BIL = F
F'/F = sinФ'
Since F'/F = 1/2
sinФ' = 1/2
Ф' = sin⁻¹(1/2) = 30°
<h2>
Answer</h2>
The <u>electron affinity in chemical reaction</u> decides the formation of breakdown of substance
<h2>
Explanation</h2>
Within the chemical reactions, different reactants are come together to make the new compound to complete up to the reaction. The reaction is based on the stability of reactants and the electron affinity of these reactants. The oxidation and reduction process within the reaction is also the main reason to combine or break the substance. For example

The hydron has the ability to lose electron and fluorine has the ability to gain an electron. The strong or weak electron affinity of this element makes the new compound HF.
Answer:
$55.6
Explanation:
sorry sorry sorry sorry sorry
Use. Weight = (mass)x(accel of gravity).
It'll be somewhere around approx roughly about in the neighborhood of 9.706667m/sec^2 .
Answer:
The distance spring compresses (x) = 0.0811 m
Explanation:
Spring constant (k) = 185 N / m
mass (m) = 1.53 kg
When mass is placed upon the spring the spring force is equal to weight of the mass.
⇒ Spring force (F) = weight of object
⇒ Spring force (F) = k × x
And weight of the object = mg
⇒ k x = mg -----------------(1)
Put all the values in equation (1) we get
⇒ 185 × x = 1.53 × 9.81
⇒ x = 0.0811 m
This the distance spring compresses, when mass is placed upon it.