Answer:
Tangential speed = R * w where w is the angular speed
For a wheel v = .114 m * 6.53 / sec = .744 m/s
Note that this is the tangential speed - If the wheel were moving at speed V then as viewed from the ground you have
top V + v
bottom V - v
That is the wheel also has speed due to the speed of the axle (axis of rotation)
Answer:All professors planned and thought about data before graph construction. When reflecting on their graphs, professors and graduate students focused on the ... feel more inclusive in the learning process and gain better science process skills, ... We organized data in a table instead of a paragraph with numbers
Explanation:
hope that helps
In a stationary situation, the weight of person is

This is the weight "felt" by the scale, which is basically the normal reaction applied by the scale on the person, and which uses the value of g (9.81) as reference to convert the weight (602.8 N) into a mass (62 kg).
When the person is in the elevator, the scale says 77 kg. The scale is still using the same value of conversion (9.81), so the apparent weight "felt" by the scale is

This is the normal reaction applied by the scale on the person, and which is directed upward. Besides this force, there is still the weight W of the person, acting downward. So, if we use Newton's second law:


where a is the acceleration of the elevator. If we solve for a, we find

The negative sign means the acceleration is in the opposite direction of g (which we take positive), so it means the elevator is going upward.
Vol of sphere = 4/3 pi r^2.density of sphere = mass/volume.mass = densityxvolumesphere 1. mass = density x 4/3 pi 4.5^2sphere 2 5mass = density x 4/3 pi r^25=4/3 pi r^2 divided by 4/3 pi 4.5^25=r^2 divided by 4.5^25x4.5^2=r^2root(5x4.5^2)=r4.5 root 5 = r
First we have to calculate the time taken to travel the distance 30 m, is
.
Now from equation of motion,

Given,
.
As object starts from rest, so u = 0.
Substituting these values in above equation, we get
.
Thus, the acceleration is 