The answer for the following question is explained.
<u><em>Therefore the number of electrons present with the values n = 5, l = 2, m = -2, s = +1/2 is</em></u><u> </u><u><em>one(1).</em></u>
Explanation:
Here;
n represents the principal quantum number
l represents the Azimuthal quantum number
m represents magnetic quantum number
s represents spin quantum number
n = 5,
l = 2,
m = -2,
s = +1/2
Here, it implies 5d orbital.
In the 5d orbital, 10 electrons.
As the magnetic quantum number is -2, and so it can have 1 electron.
<u><em>Therefore the number of electrons present with the values n = 5, l = 2, m = -2, s = +1/2 is</em></u><u> </u><u><em>one(1)</em></u>
This is a one-step unit analysis problem. Since we are staying in moles, grams of our compound, and thus molar mass, is not needed.
1 mole is equal to 6.022x10²³ particles as given, so:

<h3>
Answer:</h3>
2.49 mol
Let me know if you have any questions.
Answer:
If the zero is between fwo nonzeros
Explanation:
The answer would be uranium and thorium. When an alpha ejects a particle, it will create a new atom. So, when uranium ejects an alpha particle, it will produce thorium. They call this process as the alpha decay. Alpha decay often happens on atoms that are abundant nuclei such as uranium, radium, and thorium.
Answer: Hmmmmm that's crazy....
There are a couple of equations one could use for this type of problem, but I find the following to be the easiest to use and to understand.
Fraction remaining (FR) = 0.5n
n = number of half lives that have elapsed
In this problem, we need to find n and are given the FR, which is 1.56% or 0.0156 (as a fraction).
0.0156 = 0.5n
log 0.0156 = n log 0.5
-1.81 = -0.301 n
n = 6.0 half lives have elapsed
Explanation:
Just wanted to help. Hopefully it's correct wouldn't want to waster your time ;)