The answer to this question would be: a spring scale.
The spring scale that you use to determine your body weight is actually a device that measures your body gravitational force. The force itself influenced by your body weight, that is why it can determine your body weight.
More weight means more force, more force will shrink the spring more.
yes science is the process of pursuing knowledge this is because without science we would not know about our brains and our brains help us peruse knowledge
Answer:
When a motorcycle takes a turn, centrifugal force—in this case, friction between the tires and the road—pushes it towards the center. This basic physics explains why riders can lean into turns without falling. However, when an outside force disrupts or unbalances these forces, the vehicle crashes. that is the only one that I can answer for you. :)
Complete Question
The complete question is shown on the first and second uploaded image
Answer:
The velocity is
Explanation:
The kinetic energy of the 9 kg can be determined by these expression
Kinetic energy of 9 kg block = initial energy stored - energy lost as a result of friction
Now to obtain the initial energy stored
Let U denote the initial energy stored and

Where x is the length the spring is displaced
k is the force constant of the string


Now referring to the formula above
i.e Kinetic energy of 9 kg block = initial energy stored - energy lost as a result of friction



and we are told that coefficient of friction = 0.4 and the mass is 9 kg ,the acceleration due to gravity
this displacement length of spring = 0.6
Therefore 
That depends on what quantity is graphed.
It also depends on what kind of acceleration is taking place ...
continuous change of speed or continuous change of direction.
-- If the graph shows speed vs time, and the acceleration is a change
in speed, then the graph is a connected series of straight-line pieces.
Each straight piece slopes up if speed is increasing, or down if speed
is decreasing.
-- If the graph shows speed vs time, and the acceleration is a change in
direction only, then the graph is a straight horizontal line, since speed is
constant.
-- If the graph shows direction vs time, and the acceleration is a change
in speed only, then the graph is a straight horizontal line, since direction
is constant.
-- If the graph shows direction vs time, and the acceleration is a change
in direction, then the graph is a connected series of pieces of line.
Each piece may be straight if the direction is changing at a constant rate,
or curved if the direction is changing at a rate which grows or shrinks.
Each piece may slope up if the angle that defines the direction is growing,
or may slope down if the angle that defines the direction is decreasing.
-- If the graph shows distance vs time, and the acceleration is a
change in speed, then the graph is a connected series of pieces
of curves. Each piece curves up if speed is increasing, or down if
speed is decreasing.
-- If the graph shows distance vs time, and the acceleration is a change
in direction only, then the graph is a straight line sloping up, since speed
is constant.