Answer:
The final and initial concentration of the acid and it's conjugate base are approximately equal, that is we use the weak acid approximation.
Explanation:
The Henderson-Hasselbalch is used to calculate the pH of a buffer solution. It depends on the weak acid approximation.
Since the weak acid ionizes only to a small extent, then we can say that [HA] ≈ [HA]i
Where [HA] = final concentration of the acid and [HA]i = initial concentration of the acid.
It also follows that [A^-] ≈ [A^-]i where [A^-] and[A^-]i refer to final and initial concentrations of the conjugate base hence the answer above.
Density = 1.01 g/cm^3 or 1.01 kg/dm^3 or 1010 kg/m^3
Density = mass/volume = 1010 g/1000 cm^3 = 1.01 g/cm^3 = 1.01 kg/dm^3
= 1010 kg/m^3
2.13x10^24 is the answer.
Answer:

Explanation:
Hello!
In this case, since the reaction between sulfuric acid and aluminum hydroxide is:

Whereas the ratio of sulfuric acid to aluminum hydroxide is 3:2; thus, we first compute the moles of sulfuric acid that complete react with 3.209 g of aluminum hydroxide:

Then, given the molarity, it is possible to obtain the milliliters as follows:

Best regards!
You did not include the list but F is fluorine. The first halogen.
So, you can expect that the other members of the same group (halogens, column 17 of the periodic table) exhibit similar chemical behavior (reactivity).
So, I am sure your list contains one or more of theses elements: Cl (chlorine), Br (bromine), and I (iodine).
All of them you can expect to also be reactive non metal.