Answer:
C) 6 m/s
Explanation:
Given that
m₁=5000 kg
The initial velocity of 5000 kg car =u₁
m₂=10,000 kg
The initial velocity of 10000 kg car =u₂ = 0 m/s
After collision the final speed of the both car,v = 2 m/s
There is no any external force on the system that is why linear momentum will be conserved.
Linear momentum P = m v
m₁u₁ + m₂u₂ = (m₂ + m₁) v
5000 x u₁ + 10000 x 0 = (5000 + 10000) x 2
5000 x u₁ = 15000 x 2
5 x u₁ = 15 x 2
u₁ = 6 m/s
Therefore the answer is C.
C) 6 m/s
The answer is 60 mph.
The speed (v) is distance (d) per time (t): v = d/t
Car A:
v1 = ?
t1 = 2 h
d1 = ?
___
v1 = d1/t1
d1 = v1 * t1
Car B:
v2 = ?
t2 = 1.5 h
d2 = ?
___
v2 = d2/t2
d2 = v2 * t2
<span>Two cars traveled equal distances:
d1 = d2
</span>v1 * t1 = v2 * t2
<span>Car B traveled 15 mph faster than Car A:
v2 = v1 + 15
</span>v1 * t1 = v2 * t2
v2 = v1 + 15
________
v1 * 2 = (v1 + 15) * 1.5
2v1 = 1.5v1 + 22.5
2v1 - 1.5v1 = 22.5
0.5v1 = 22.5
v1 = 22.5/0.5
v1 = 45 mph
v2 = v1 + 15
v2 = 45 + 15
v2 = 60 mph
As per the given Figure attached here we know that both charges q1 and q2 will apply same force on charge q3 and hence the resultant force due to both charges will be along Y axis vertically upwards
So here we know that

now from the above equation


so both of the charges will apply 0.288 N force on q3 charge along the line joining them
now the net force due to vector sum is given by

here we know that angle is

now we have


so net force on q3 is 0.46 N vertically upwards along +Y axis
Answer:
Reorder the steps so that step 4 appears before step 3
Explanation:
In a nuclear power plant, we have;
1) Nuclear reaction between the radio active species and the particles takes place to generate energy in the nucleus of atoms
2) The nuclear energy in the atom is converted into radiant energy, which is the energy found in light, and thermal (heat) energy
3) The produced radiant and thermal energy is released as heat and light
4) With the produced heat, steam is generated
5) The generated steam turns the steam turbines and produced mechanical energy
6) The produced mechanical energy is then converted into electrical energy in the electrical generator of the power plant
To correct Savion's error, Step 4) the light and heat should be released before step 3) the released heat can be used to generate steam, we therefore reorder the steps so that step 4 appears before step 3.