<h2>
Answer: 9600 J</h2>
The kinetic energy
of a body is that energy it possesses due to its movement and is defined as:
Where
is the mass of the body and
its velocity
.
This has to do with the speed of an object and how much mass it has; basically how the object is moving.
Now, according to this equation and knowing that the mass of the buffalo is
and its velocity
:
Therefore the correct option is B.
Answer:
The shortest distance is
Explanation:
The free body diagram of this question is shown on the first uploaded image
From the question we are told that
The speed of the bicycle is 
The distance between the axial is 
The mass center of the cyclist and the bicycle is
behind the front axle
The mass center of the cyclist and the bicycle is
above the ground
For the bicycle not to be thrown over the
Momentum about the back wheel must be zero so

=> 
=> 
Here 
So 
Apply the equation of motion to this motion we have

Where 
and
since the bicycle is coming to a stop

=>
Answer:
94.28 cm
Explanation:
The formula for elastic potential energy is given as;
PEel = 1/2 *k*x² where x is the displacement, k is the spring constant
Given
PEel = 110 J, k= 350 N/m then find x
PEel = 1/2 *k*x²
110 = 1/2 * 350 * x²
110 = 175 x²
110/175 = x²
0.6286=x²
√0.6286 =x
0.7928 m = x
79.28 cm = x
New length of spring = 15 cm + 79.28 cm = 94.28 cm
I think the correct answer from the choices listed above is option B. The very high voltage needed to create a spark across the spark plug is produced at the transformer's secondary winding. <span>The secondary coil is engulfed by a powerful and changing magnetic field. This field induces a current in the coils -- a very high-voltage current.</span>
The two basic defenses in basketball are man-to-man, sometimes referred to as person-to-person in respect for the rise of women's basketball, and zone. Each basic defense has a number of variations.