We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>
Answer:
Explanation:
From the question;
We will make assumptions of certain values since they are not given but the process to achieve the end result will be the same thing.
We are to calculate the following task, i.e. to determine the electric field at the distances:
a) at 4.75 cm
b) at 20.5 cm
c) at 125.0 cm
Given that:
the charge (q) = 33.3 nC/m
= 33.3 × 10⁻⁹ c/m
radius of rod = 5.75 cm
a) from the given information, we will realize that the distance lies inside the rod. Provided that there is no charge distribution inside the rod.
Then, the electric field will be zero.
b) The electric field formula 

E = 1461.95 N/C
c) The electric field E is calculated as:

E = 239.76 N/C
Answer:
In a global convection cell less –dense air at the equator rises and flows towards the poles. And from pole, the dense air sinks down and flows back towards the equator.... This movement of air is also supported by the Earth's rotation known as Coriolis Effect.
Answer:

Explanation:
According to the free-body diagram of the system, we have:

So, we can solve for T from (1):

Replacing (3) in (2):

The electric force (
) is given by the Coulomb's law. Recall that the charge q is the same in both spheres:

According to pythagoras theorem, the distance of separation (r) of the spheres are given by:

Finally, we replace (5) in (4) and solving for q:

The book is lifted upward, but gravity points down, so the work done by gravity must be negative (so you can eliminate options 1 and 3).
The force exerted on the book by gravity has magnitude
<em>F</em> = <em>mg</em> = (10 N) (9.80 m/s^2) = 9.8 N ≈ 10 N
You raise the book 1.0 m in the opposite direction, so the work done is
<em>W</em> = (10 N) (-1.0 m) = -10 J