Answer:
The correct answer is no.
Explanation:
Tellurium is a chemical element denoted by Te and having atomic number 52. It is mildly toxic, brittle, silver-white, and rare metalloid. The element is chemically related to sulfur and selenium, all three of which are chalcogens.
Oxygen is a chemical element, that is, a substance, which comprises only one kind of atom. Its official chemical symbol is O and exhibits an atomic number 8, this signifies that an atom of oxygen possesses eight protons in its nucleus. In the given question, it is not likely that tellurium would replace for oxygen, as the two elements are highly unlike.
A saturated solution is one in which no more solute is able to dissolve in a given solvent at a particular temperature. Some amount of the solute is left undissolved in the solution.
Unsaturated solution has solute in lower proportions than required to form a saturated solution.
Supersaturated solution has solute in amounts greater than a saturated solution.
We can take the help of solubility curve in order to find out the amount of a salt required to prepare a saturated solution of that salt at a particular temperature.
The solubility of KI at 10
is 136 g/ 100 mL water
The solubility of
at
is 21 g/100 mL water.
The solubility of
at
is 80 g/100 mL water.
The solubility of NaCl at
is 38 g/ 100 mL water.
So the correct answer will be KI, as it would need 136 g KI / 100 mL water to form a saturated solution at
.So, if we have 80g KI/ 100mL water it would be an unsaturated solution.
<span>You can find
the number of moles in equilibrium if you got the chemical reaction correctly. Make
sure that you got the exact chemical formula of the substance that is reacting
and the yielded product. If you got them, balance the chemical reaction. If the
chemical reaction is balanced, the system is in equilibrium. You can find the
number of moles in equilibrium at the coefficients of the chemical substances
you are balancing. For example, N2 + 3H2 -> 2NH3. The number of moles of N2
is 1, H2 is 3 and NH3 is 2.</span>
No, it does not. I believe it's false.
Answer:
'Oxidation states have changed.'
Explanation:
Redox Reactions can be identifiable by a change in oxidation number/states of two of the atoms in the reaction. Any reaction in which no oxidation numbers/state change is not a redox reaction.