The period of the wave is determined as 0.083 seconds.
<h3>What is period of a wave?</h3>
The period of a wave is the time taken by a particle of the medium to complete one vibration.
<h3>Period of the wave</h3>
The period of the wave is calculated as follows;
T = 1/f
where;
- T is the period of the wave
- f is frequency of the wave
T = 1/12
T = 0.083 seconds
Thus, the period of the wave is determined as 0.083 seconds.
Learn more about period of a wave here: brainly.com/question/18818486
#SPJ4
The correct answer to the question is : Transverse wave.
EXPLANATION :
Before going to answer this question, first we have to understand the longitudinal and transverse wave.
LONGITUDINAL WAVE : A longitudinal wave is a mechanical wave in which the direction of vibration of particles is parallel to the direction of wave propagation. It moves in the form of compression and rarefaction.
For instance, sound wave.
TRANSVERSE WAVE : A transverse wave is a mechanical wave in which the direction of vibration of particles is perpendicular to the direction of wave propagation. It moves in the form of crests and troughs.
For instance, the wave created in a pond when a stone is dropped into it.
Hence, the correct answer of this question is transverse wave.
N2O is nitrous oxide becuase of the nitrogen and oxygen
<h2>
Answer:Radiation-3,Conduction-1,Convection-2</h2>
Explanation:
Radiation is the transfer of heat through electromagnetic waves.
These waves do not require any medium.This is the way we get heat from sun.Radiation is the quickest mode to transfer of heat.
Conduction is the transfer of heat through collisions of atomic particles.
This phenomenon largely occurs in solids like metals.The neighbour atoms sets the atoms into random motion thereby raising the temperature.
Convection is the transfer of heat through actual movement of medium particle.
This phenomenon occurs in gases an liquids.The medium particles actually traverse through the space transferring the heat.
Answer:
it can be calculated by measuring the final distance away from a point, and then subtracting the initial distance