M C C O R M I C K T E A M ’ S O P E N Q U A N T U M M AT E R I A L S D ATA B A S E
O F F E R S U N L I M I T E D A C C E S S T O
ANALYSES OF NEARLY 300,000 COMPOUNDS
Iron bromide isn't considered magnetic because all iron compounds are not magnetic
Answer:
Cookies definitely obeys the law of conservation.`
Explanation:
As, When Maria mixes up the ingredients, Water was also one among them
And, Initially When she was measuring the weight of Ingredients, Weight of Water was coming,
But,
When She baked the cookies , water from the cookies got evaporated , and thus weight coming was decreased finally.
Considering Cookies and Environment Whole as a system You can clearly say that they obeys Law of conservation of mass , As Water is present in Environment for now.
Q1)
molarity is defined as the number of moles of solute in 1 L solution
the number of moles of LiNO₃ - 0.38 mol
volume of solution - 6.14 L
since molarity is number of moles in 1 L
number of moles in 6.14 L - 0.38 mol
therefore number of moles in 1 L - 0.38 mol / 6.14 L = 0.0619 mol/L
molarity of solution is 0.0619 M
Q2)
the mass of C₂H₆O in the solution is 72.8 g
molar mass of C₂H₆O is 46 g/mol
number of moles = mass present / molar mass of compound
the number of moles of C₂H₆O - 72.8 g / 46 g/mol
number of C₂H₆O moles - 1.58 mol
volume of solution - 2.34 L
number of moles in 2.34 L - 1.58 mol
therefore number of moles in 1 L - 1.58 mol / 2.34 L = 0.675 M
molarity of C₂H₆O is 0.675 M
Q3)
Mass of KI in solution - 12.87 x 10⁻³ g
molar mass - 166 g/mol
number of mole of KI = mass present / molar mass of KI
number of KI moles = 12.87 x 10⁻³ g / 166 g/mol = 0.0775 x 10⁻³ mol
volume of solution - 112.4 mL
number of moles of KI in 112.4 mL - 0.0775 x 10⁻³ mol
therefore number of moles in 1000 mL- 0.0775 x 10⁻³ mol / 112.4 mL x 1000 mL
molarity of KI - 6.90 x 10⁻⁴ M
Explanation:
Thermal energy is the internal energy of an object due to the kinetic energy of its atoms and/or molecules. The atoms and/or molecules of a hotter object have greater kinetic energy than those of a colder one, in the form of vibrational, rotational, or, in the case of a gas, translational motion.