1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
3 years ago
7

A water wave has a frequency of 2 Hertz and a wavelength of 5 cm. Calculate it speed

Physics
1 answer:
Llana [10]3 years ago
8 0

Answer: 0.1 m/s

Explanation:

Use formula,

v = f * w where, v is speed, f is frequency and w is wavelength.

Now,

v = 2 * 5 * 10 ^ -2 ( Remember to convert all the units to SI units. Here 5 cm becomes 5 * 10 ^ -2 m. )

v = 0.1 m/s.

You might be interested in
What is latent heat? Group of answer choices Energy released when water evaporates. Energy hidden in water vapor in the air. Ene
Andrews [41]

Answer:

Energy absorbed or hidden when water evaporates

Explanation:

The heat that is required to make a phase change is known as latent heat.

A phase change occurs when matter changes state. For example from solid to liquid, from liquid to gas, among others.

When changing from liquid to gas (for example when water evaporates), the heat necessary for this to happen is called latent heat of vaporization. The word latent means hidden, because a change in temperature is not perceived during the phase change, even when heat is being added, thus it is said that the heat is hidden or latent.

So the answer is:

  • Energy absorbed or hidden when water evaporates.

*Another type of latent heat is the latent heat of fusion, which is when a solid becomes liquid.

7 0
3 years ago
What is the path that an electric current follows called
Gwar [14]
I’m sure it’s called a circuit:)
5 0
3 years ago
Read 2 more answers
The roller-coaster car shown in fig. 6-41 (h1 = 30 m, h2 = 12 m, h3 = 20 m), is dragged up to point 1 where it is released from
maxonik [38]
<span>Since there is no friction, conservation of energy gives change in energy is zero Change in energy = 0 Change in KE + Change in PE = 0 1/2 x m x (vf^2 - vi^2) + m x g x (hf-hi) = 0 1/2 x (vf^2 - vi^2) + g x (hf-hi) = 0 (vf^2 - vi^2) = 2 x g x (hi - hf) Since it starts from rest vi = 0 Vf = squareroot of (2 x g x (hi - hf)) For h1, no hf Vf = squareroot of (2 x g x (hi - hf)) Vf = squareroot of (2 x 9.81 x 30) Vf = squareroot of 588.6 Vf = 24.26 For h2 Vf = squareroot of (2 x 9.81 x (30 – 12)) Vf = squareroot of (9.81 x 36) Vf = squareroot of 353.16 Vf = 18.79 For h3 Vf = squareroot of (2 x 9.81 x (30 – 20)) Vf = squareroot of (20 x 9.81) Vf = 18.79</span>
7 0
3 years ago
NEED HELP ASAP
Dafna11 [192]

Answers:

a) -2.54 m/s

b) -2351.25 J

Explanation:

This problem can be solved by the <u>Conservation of Momentum principle</u>, which establishes that the initial momentum p_{o} must be equal to the final momentum p_{f}:  

p_{o}=p_{f} (1)  

Where:  

p_{o}=m_{1} V_{o} + m_{2} U_{o} (2)  

p_{f}=(m_{1} + m_{2}) V_{f} (3)

m_{1}=110 kg is the mass of the first football player

V{o}=-7 m/s is the velocity of the first football player (to the south)

m_{2}=75 kg  is the mass of the second football player

U_{o}=4 m/s is the velocity of the second football player (to the north)

V_{f} is the final velocity of both football players

With this in mind, let's begin with the answers:

a) Velocity of the players just after the tackle

Substituting (2) and (3) in (1):

m_{1} V_{o} + m_{2} U_{o}=(m_{1} + m_{2}) V_{f} (4)  

Isolating V_{f}:

V_{f}=\frac{m_{1} V_{o} + m_{2} U_{o}}{m_{1} + m_{2}} (5)

V_{f}=\frac{(110 kg)(-7 m/s) + (75 kg) (4 m/s)}{110 kg + 75 kg} (6)

V_{f}=-2.54 m/s (7) The negative sign indicates the direction of the final velocity, to the south

b) Decrease in kinetic energy of the 110kg player

The change in Kinetic energy \Delta K is defined as:

\Delta K=\frac{1}{2} m_{1}V_{f}^{2} - \frac{1}{2} m_{1}V_{o}^{2} (8)

Simplifying:

\Delta K=\frac{1}{2} m_{1}(V_{f}^{2} - V_{o}^{2}) (9)

\Delta K=\frac{1}{2} 110 kg((-2.5 m/s)^{2} - (-7 m/s)^{2}) (10)

Finally:

\Delta K=-2351.25 J (10) Where the minus sign indicates the player's kinetic energy has decreased due to the perfectly inelastic collision

6 0
3 years ago
Which law is used to find the magnitude of a magnetic force?
Talja [164]

Answer:

The Flemings left hand rule is used to find the magnitude of a magnetic force

Explanation:

Fleming's left hand rule states that if the first three fingers are held mutually at right angles to one another, then the fore finger points into the direction of magnetic field the middle finger in the direction of current while the thumb points in the direction of force.

Mathematically

Magnetic Force F= BILsinθ

Where

B= magnetic field density Tesla

I= current

L= length of conductor

θ= angle of conductor with field

3 0
3 years ago
Other questions:
  • A Sound wave has a frequency of 192 HZ and travels across a football field (91.4m) in 2 seconds. what is the wavelength of the s
    13·1 answer
  • Which of the following statements about rest and physical activity is NOT true?
    14·1 answer
  • Scientists in a particular field strive for the same quality of work because they know their peers will be reviewing their scien
    13·2 answers
  • When the current in a coil flows in anti-clockwise direction, what pole does it create?​
    10·1 answer
  • A rugby player runs with the ball directly toward his opponent's goal, along the positive direction of an x axis. He can legally
    10·1 answer
  • Materials that are poor conductors of thermal energy are called.....
    6·1 answer
  • Complete the sentence below using the words provided in parentheses (). For two universes that are the same size, the universe w
    12·1 answer
  • The sun shines equally on both hemispheres during the summer and winter solstices.
    10·1 answer
  • Hey can anyone please help me with this it’s due in few hours and I’m stuck
    11·1 answer
  • Please help me I’ll mark you as Brainly <br><br><br> PLSSSS
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!