Your average speed was
(100 m) / (13.8 s) = 7.25 m/s .
If you finished 0.001s ahead of him, then at your average speed, that corresponds to
(7.25 m/s) x (0.001 s) = 0.00725 m
That's 7.25 millimeters ... about 0.28 of an inch !
NOTE:. I think this is only valid if your speed was a constant ~7.25 m/s all the way.
Answer:
2a) x = 32 [mil/h]; 2b) t = 0.5[h]; 3a) t = 2.5 [h]; 3b) x = 185[mil]
Explanation:
2a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 32 [\frac{mil}{h}] \\t=time = 1 [h]\\x=v*t\\x=32[\frac{mil}{h} ]*1[h]\\x=32[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2032%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%201%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D32%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A1%5Bh%5D%5C%5Cx%3D32%5Bmil%7D)
2b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{420}{840}\\ t=0.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B420%7D%7B840%7D%5C%5C%20t%3D0.5%5Bh%5D)
3a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{35}{14}\\ t=2.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B35%7D%7B14%7D%5C%5C%20t%3D2.5%5Bh%5D)
3b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 74 [\frac{mil}{h}] \\t=time = 2.5 [h]\\x=v*t\\x=74[\frac{mil}{h} ]*2.5[h]\\x=185[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2074%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%202.5%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D74%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A2.5%5Bh%5D%5C%5Cx%3D185%5Bmil%7D)
Answer:
Work done will be 2.205 j
Explanation:
We have given that the spring is compressed b 37.5 cm
So d = 0.375 m
Mass of the block m = 600 gram = 0.6 kg
Acceleration due to gravity 
Gravitational force on the block 
Now we know that work done is give by 
Answer:
0 N
Explanation:
suppose, you push a box with 5 N, and another person pushes the box on the opposite side of the box with 5 N, the net force (resultant ) is 0 N, the box will not move if it wasn't moving
hope this helps
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1