Answer:
Orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Explanation:
The gravitational force is responsible for the orbital motion of the planet, satellite, artificial satellite, and other heavenly bodies in outer space.
When an object is applied with a velocity that is equal to the velocity of the orbit at that location, the body continues to move forward. And, this motion is balanced by the gravitational pull of the second object.
The orbiting body experience a centripetal force that is equal to the gravitational force of the second object towards the body.
The velocity of the orbit is given by the relation,

Where
V - velocity of the orbit at a height h from the surface
R - Radius of the second object
G - Gravitational constant
h - height from the surface
The body will be in orbital motion when its kinetic motion is balanced by gravitational force.

Hence, the orbital motion results when the object’s forward motion is balanced by a second object’s gravitational pull.
Answer: The trip takes 
Explanation:
Velocity
is the variation of the position of a body (distance traveled
) with time
:
In this case, the car travels a distance
at a velocity
and we need to find the time it takes the trip.
Isolating
:

Finally:

Section 2 is right,, i think. good luck
Answer:
this is were you get everything
Explanation:
C.
Because it’s falling it has acceleration in the y direction. If you have acceleration, you usually also have velocity, and since kinetic energy is KE= Mv^2 you know you have it. It also has potential energy because it has some height to it, and PE= Mgh.