2.258625 *10²³ oxygen atoms will be produced.
<h3><u>Explanation:</u></h3>
Decomposition reaction is defined as the type of reaction where one single reactant breaks to produce more than one product only by means of heat or other external factor.
Formula of magnesium oxide = MgO.
The molecular mass of magnesium oxide = 24 +16= 40.
So in 40 grams of magnesium oxide, number of molecules is 6.023 * 10²³.
So in 15 grams of magnesium oxide,, number of molecules is 6.023 *1023 * 15/40 = 2.258625 *10²³.
From one molecule of magnesium oxide, one oxide atom will be produced.
So number of oxide atoms with 100% yeild = 2.258625 *10²³
Answer:
68.3%
Explanation:
First, let us look at the equation of reaction involving silver and magnesium chloride:
2Ag + MgCl2 ----> 2AgCl + Mg
1 mole of MgCl2 is required to precipitate 2 moles of Ag completely from the solution. That is a ratio of 1 to 2.
Now, mole of MgCl2 used to precipitate all the Ag
= molarity x volume
= 2.19 M x 2.89/1000
= 0.0063291 mole
Since 1 mole of MgCl2 would always require 2 moles of Ag, 0.0063291 mole will therefore require:
0.0063291 x 2 = 0.0126 mole of Ag
This means that 0.0126 mole of Ag is present in stephanie.
Mass of silver in stephanie = mole x molar mass
= 0.0126 x 107.8682
= 1.365 g
Thus, 1.365 g of silver is present in 2.00 g sample of stephanie.
Mass percent of silver in stephanie = 1.365/2.00 x 100
= 68.25% = 68.3% to the correct number of significant figure.
Answer:
No
Explanation:
No, but the total mass of reactants must equal the total mass of products to be a balanced equation.
Example: Consider the following reaction ...
3H₂ + N₂ => 2NH₃ and 'amu' is atomic mass units (formula weights from periodic table)
In terms of molecules, there are 4 molecules on the left (3 molecular hydrogens (H₂) and 1 molecular nitrogen (N₂) and 2 molecules of ammonia on the right side of equation arrow. ∑reactant molecules ≠ ∑product molecules.
In terms of mass of reactants & mass of products, the 3H₂ + N₂ => 6amu + 28amu = 34amu & mass of products (2NH₃) => 2(14amu) + 6(1amu) = 34amu for sum of product masses.
∑mass reactants = ∑mass products <=> 34amu = 34amu.
The expression '∑mass reactants = ∑mass products' as applied to chemical equations is generally known as 'The Law of Mass Balance'.