Answer:
The answer is melting and freezing point.
Explanation:
0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Potassium hydrogen phthalate, KHP, is a monoprotic acid often used to standardize NaOH solutions.
The balanced neutralization equation is:
NaOH(aq) + KHC₈H₄O₄(aq) ⇒ KNaC₈H₄O₄(aq) + H₂O(l)
- Step 1: Calculate the reacting moles of KHP.
0.212 g of KHP react. The molar mass of KHP is 204.22 g/mol.
0.212 g × 1 mol/204.22 g = 1.04 × 10⁻³ mol
- Step 2: Determine the reacting moles of NaOH.
The molar ratio of NaOH to KHP is 1:1.
1.04 × 10⁻³ mol KHP × 1 mol NaOH/1 mol KHP = 1.04 × 10⁻³ mol NaOH
- Step 3: Calculate the molarity of NaOH.
1.04 × 10⁻³ moles of NaOH are in 35.00 mL of solution.
[NaOH] = 1.04 × 10⁻³ mol / 35.00 × 10⁻³ L = 0.0297 M
0.212 g of KHP is are dissolved in 50.00 mL of water and are titrated by 35.00 mL of 0.0297 M NaOH.
Learn more about titration here: brainly.com/question/4225093
Answer:
C. liquid to a gas
Explanation:
I know this is right but I don't have an explanation
Suspensions
Explanation:
Suspensions are heterogeneous mixtures that contains large particles that can settle out or be filtered.
- Suspensions are mixtures of small insoluble particles of a solid in a liquid or gas.
- Examples are:
- powdered chalk in water
- muddy water
- harmattan
The particles in suspension can settle on standing
Learn more:
Suspension brainly.com/question/1557970
heterogeneous mixture brainly.com/question/1446244
#learnwithBrainly
Answer:
Energy in the campfire originates from the potential chemical energy of the wood, before it is burnt to warm and give light around the campfire.
Explanation:
For a camp fire, the energy input is in the form of the potential chemical energy, stored up in the firewood used to fuel the flame.
The energy output is in the form of heat energy that the campfire radiates all around, light energy given off from the flame, and a little bit of sound energy, heard in the cracking of the firewood as they burn in the flame.
chemical energy ⇒ heat energy + light energy + sound energy