Answer:
by the looks of it the answer you have is correct
Explanation:
From the calculation as shpwn in the procedure below, the equilibrium constant of the substance is 6.9 * 10^-15.
<h3>What is equilibrium constant?</h3>
The equilibrium constant for the solubility of aa solid in solution is called the solubility product Ksp. The Ksp shows the extent to which a solid is dissolved in solution.
Given that;
Fe(OH)2 ⇄Fe^2+ + 2(OH)^-
Ksp = s(2s)^2
We have s as 1.2 x 10^-5 M
So
Ksp = 4s^3
Ksp = 4( 1.2 x 10^-5 )^3
Ksp = 6.9 * 10^-15
Learn more about Ksp:brainly.com/question/27132799
#SPJ1
Answer:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
The coefficients are: 1, 6, 3, 2
Explanation:
__Fe₂(SO₄)₃ + __KOH —> __K₂SO₄ + __Fe(OH)₃
To determine the correct coefficients, we shall balance the equation. This can be obtained as follow:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + Fe(OH)₃
There are 2 atoms of Fe on the left side and 1 atom on the right side. It can be balance by writing 2 before Fe(OH)₃ as shown below:
Fe₂(SO₄)₃ + KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of OH on the right side and 1 atom on the left side. It can be balance by writing 6 before KOH as shown below:
Fe₂(SO₄)₃ + 6KOH —> K₂SO₄ + 2Fe(OH)₃
There are 6 atoms of K on the left side and 2 atoms on the right side. It can be balance by writing 3 before K₂SO₄ as shown below:
Fe₂(SO₄)₃ + 6KOH —> 3K₂SO₄ + 2Fe(OH)₃
Now, the equation is balanced.
Therefore, the coefficients are: 1, 6, 3, 2
First we will calculate the number of moles of Iron:

, where n is the number of moles, m is the mass of iron in the reaction and M is the Atomic weight.

moles of Iron.
The same number of moles of Oxygen will take part in the reaction.
So

where 32 is the Atomical Weight of Oxygen (16 x 2).
=>

g