Answer:A. An increase in temperature increases the reaction rate.
Explanation:because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
Answer:
The correct answer is because they have same number of protons but different number of neutrons.
Explanation:
Isotopes are atoms of the same element but differ only in the number of neutrons in the nucleus, i.e. they have same atomic number but different mass number.
Mass number is affected as they have different number of neutrons, thus effecting their physical properties.
The number of electrons and protons are same, i.e. their atomic number is same and thus their chemical properties are same as chemical properties are determined by the atom’s electronic configuration and that relates to number of protons.
Answer:
1.) 13 g C₄H₁₀
2.) 41 g CO₂
Explanation:
To find the mass of propane (C₄H₁₀) and carbon dioxide (CO₂), you need to (1) convert mass O₂ to moles O₂ (via molar mass), then (2) convert moles O₂ to moles C₄H₁₀/CO₂ (via mole-to-mole ratio from equation coefficients), and then (3) convert moles C₄H₁₀/CO₂ to mass C₄H₁₀/CO₂ (via molar mass). It is important to arrange the ratios in a way that allows for the cancellation of units. The final answers should have 2 sig figs to match the sig figs of the given value.
Molar Mass (C₄H₁₀): 4(12.011 g/mol) + 10(1.008 g/mol)
Molar Mass (C₄H₁₀): 58.124 g/mol
Molar Mass (CO₂): 12.011 g/mol + 2(15.998 g/mol)
Molar Mass (CO₂): 44.007 g/mol
Molar Mass (O₂): 2(15.998 g/mol)
Molar Mass (O₂): 31.996 g/mol
2 C₄H₁₀ + 13 O₂ ----> 8 CO₂ + 10 H₂O
48 g O₂ 1 mole 2 moles C₄H₁₀ 58.124 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 13 g C₄H₁₀
48 g O₂ 1 mole 8 moles CO₂ 44.007 g
--------------- x ----------------- x -------------------------- x ------------------ =
31.996 g 13 moles O₂ 1 mole
= 41 g CO₂
The most common pH indicator used in Simmons Citrate Agar is Bromthymol Blue (BTB)
Simmons Citrate Agar is a selective and differential medium used for the detection and differentiation of Enterobacteriaceae (gram-negative bacteria).
The medium contains sodium citrate as the sole carbon source, which is used to differentiate organisms based on their ability to utilize citrate as a sole carbon source.
The medium also contains pH indicators that change color based on the pH of the medium. The most common pH indicator used in Simmons Citrate Agar is Bromthymol Blue (BTB).
BTB is a pH indicator that turns yellow in acidic conditions and blue in basic conditions. As the bacteria metabolize the citrate in the medium, they produce acids, which cause the medium to become acidic.
This change in pH is detected by the BTB, which changes color from blue to yellow. The yellow coloration of the medium is an indication that the organism is utilizing citrate as a sole carbon source.
To know more about agar, click below:
brainly.com/question/4634808
#SPJ4