Answer:
Things that are too small (or too large) to see can be studied with models
True
The choices can be found elsewhere and as follows:
a. mass-mass problems
<span>b. mass-volume problems </span>
<span>c. mass-particle problems </span>
<span>d. volume-volume problems
</span>
I believe the correct answer is option D. It is volume-volume problems that does not require the use of molar mass. <span> Here you are dealing with molarities and volumes to determine concentrations. Molar mass is not part of any calculations.</span>
First, it is best to know the chemical formula of pyridine which is C5H5N. To determine the number of carbon atoms present in pyridine, multiply 7.05 mol C5H5N with 5 mol C/ 1 mol C5H5N which then results to 35.35 mol of carbon. Then, multiply the answer to Avogadro's number which is 6.022x10^23 atoms. It is then calculated that the number of carbon atoms in 7.05 moles of pyridine is 2.12x10^25 atoms.
Answer: A plot of the natural log of the concentration of the reactant as a function of time is linear.
Explanation:
Since it was explicitly stated in the question that the half life is independent of the initial concentration of the reactant then the third option must necessarily be false. Also, the plot of the natural logarithm of the concentration of reactant against time for a first order reaction is linear. In a first order reaction, the half life is independent of the initial concentration of the reactant. Hence the answer.
You need the Avogadro's number. I can't remember exactly the calculation.