Answer:
24 atoms of H or 1.4 x 10²⁵ hydrogen atoms
Explanation:
simple method
1 H₂O has atoms of hydrogen and 1 atom of oxygen
while 12H₂O will have 24 atoms of hydrogen and 12 atom of oxygen
by Avagadros number
molar mass of water H₂0=18.01528 g/mol
1 mole of H₂0 have 2 moles of Hydrogen
one mole of water= 6.02⋅10²³water molecules =1.2 x 10²⁴hydrogen atoms
12 mole of H₂O = 1.2 x 10²⁴ x 12= 1.4 x 10²⁵ hydrogen atoms
<u />
1.4 x 10²⁵ hydrogen atoms in 12 moles of H₂O
<u />
Answer:
433 m
Explanation:
Since the fall represents motion under gravity, we use the equation
s = ut - 1/2gt² where s = height of cliff or distance bowling ball falls through, u = initial velocity of bowling ball = 0 m/s(since it starts from rest), t = time = 9.4 s and g = acceleration due to gravity = -9.8 m/s².
So, substituting the values of the variables into the equation, we have
s = 0 m/s × 9.4 s - 1/2 × 9.8 m/s² × (9.4 s)²
s = 0 m - 1/2 × -9.8 m/s² × 88.36 s²
s = 1/2(865.928 m)
s = 432.964
s ≅ 433 m
Answer:
300 mM
Explanation:
In order to solve this problem we need to calculate the line of best fit for those experimental values. The absorbance values go in the Y-axis while the concentration goes in the X-axis. We can calculate the linear fit using Microsoft Excel using the LINEST function (alternatively you can write the Y data in one column and X data in another one, then use that data to create a dispersion graph and finally add the line of best fit and its formula).
The <u>formula for the line of best fit for this set of data is</u>:
So now we <u>calculate the value of </u><u><em>x</em></u><u> when </u><u><em>y</em></u><u> is 1.50</u>: