Answer:
D
Explanation:
I just had this question the answer is D
The equation (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:
Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
- : is the initial velocity of the<em> lab cart </em>
- : is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
- : is the final velocity of the<em> lab cart </em>
- : is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:
When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:
Therefore, the equation represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
155Ω
Explanation:
R = R ref ( 1 + ∝ ( T - Tref)
where R = conduction resistance at temperature T
R ref = conductor resistance at reference temperature
∝ = temperature coefficient of resistance for conductor
T = conduction temperature in degrees Celsius
T ref = reference temperature that ∝ is specified at for the conductor material
T = 600 k - 273 k = 327 °C
Tref = 300 - 273 K = 27 °C
R = 50 Ω ( 1 + 0.007 ( 327 - 27) )
R = 155Ω
As per energy conservation we know that
Energy enter into the bulb = Light energy + Thermal energy
so now we have
energy enter into the bulb = 100 J
Light energy = 5 J
now from above equation we have