<span>x = 129.9 m
y = 30.9 m
First, let's calculate the horizontal and vertical velocities involved
h = 50.0cos(30) = 43.30127 m/s
v = 50.0sin(30) = 25 m/s
The horizontal distance is simply the horizontal velocity multiplied by the time, so
43.30127 m/s * 3 s = 129.9 m
So the horizontal distance traveled is 129.9 m, so x = 129.9 m
The vertical distance needs to take into account gravity which provides an acceleration of -9.8 m/s^2, so we get
d = 25 m/s * 3s - 0.5*9.8 m/s^2 * (3 s)^2
d = 75 m - 4.9 m/s^2 * 9 s^2
d = 75 m - 44.1 m
d = 30.9 m
So the vertical distance traveled is 30.9 m, so y = 30.9 m</span>
The characteristics of electromagnetic waves typically represent as follows:
- There are changes in the electric and magnetic fields simultaneously so that both fields have maximum and minimum values at the same time and place.
- The direction of the electric field and the magnetic field are perpendicular to each other. The direction of both is perpendicular to the direction of the wave propagation.
- The shape of electromagnetic waves is transverse waves.
- It has general wave characteristics like polarization, reflection, refraction, interference, and diffraction.
- The amount of the electric field (E) is directly proportional to the magnitude of the magnetic field, with the relationship E = cB.
- The universal constant of the velocity of electromagnetic waves in a vacuum is

- The speed at which electromagnetic waves propagate depends merely on the electrical and magnetic properties of the medium that it travels on.
- Because electromagnetic waves do not contain an electric charge, they do not experience any possible deviation in the electric or magnetic fields.
<h3>Further explanation</h3>
- Two physicists who contributed significantly to developing the concept of electromagnetic waves are Faraday and Maxwell around 1831-1864.
- From the observations, Faraday suggested that changes in the magnetic field cause an electric charge to flow in the loop of wire, contributing in the emergence of an electric field.
- Maxwell proposed a reverse process, which is a change in the electric field will generate a magnetic field.
- As follows, according to Faraday's Law, changes in sinusoidal magnetic fields generate electric fields which also change sinusoidally.
- Meantime, according to Maxwell's Hypothesis, changes in sinusoidal electric fields generate magnetic fields which also change sinusoidally.
- Furthermore, there is a process of combining electric and magnetic fields that propagate in all directions called electromagnetic waves.
<h3>Learn more </h3>
- About vector components brainly.com/question/1600633
- Determine the shortest wavelength in electron transition brainly.com/question/4986277
- Particle's speed and direction of motion brainly.com/question/2814900
Keywords: the characteristics, electromagnetic waves, transverse, vacuum, electric fields, magnetic, perpendicular, propagation, Maxwell, Faraday, the speed, polarization, reflection, refraction, interference, and diffraction
Answer:
The disorder in the universe is increasing with time.
Explanation:
The second law of thermodynamics states that the amount of entropy in the universe increases over time. Entropy expresses the number of different configurations that a system defined by macroscopic variables could assume. Therefore, is can be interpreted as a measure of the disorder, or randomness of a system.
Not sure what you mean by "breaks in the tension" but I suspect you mean the rope will come apart if the tension in the rope exceeds 1800 N.
In the free body diagram for the 500 N weight, we have a figure Y with the net force equations
• horizontal net force:
∑ F[hor] = T₁ cos(θ) - T₂ cos(θ) = 0
• vertical net force:
∑ F[ver] = T₁ sin(θ) + T₂ sin(θ) - 500 N = 0
From the first equation, it follows that T₁ = T₂, so I'll denote their magnitude by T alone. From the second equation, we have
2 T sin(θ) = 500 N
and if the maximum permissible tension is T = 1800 N, it follows that
sin(θ) = (500 N) / (3600 N) ⇒ θ = arcsin(5/36) ≈ 7.9°
is the smallest angle the rope can make with the horizontal.
Answer:
The more mass a body has the more inertia it has. If the roller coaster is moving, it will want to keep moving, along the direction of motion, unless something causes it to speed up or slow down. This resistance of the moving roller coaster to changing its velocity is another example of its inertia.