If an object<span> has a net </span>force<span> acting on it, it will accelerate. The </span>object<span> will speed up, slow down or change direction. An </span>unbalanced force<span> (net </span>force<span>) acting on an </span>object<span>changes its speed and/or direction of motion. An </span>unbalanced force<span> is an unopposed</span>force<span> that causes a change in motion.
thus the car would get its speed, and or direction mixed up</span>
Answer:
Increase in temperature = 269.54 °C
Explanation:
We have equation for thermal expansion
ΔL = LαΔT
Change in length, ΔL = 0.08 m
Length, L = 56 m
Coefficient of thermal expansion, α = 5.3 x 10⁻⁶ °C⁻1
Change in temperature, ΔT = T - 253
Substituting
0.08 = 56 x 5.3 x 10⁻⁶ x (T - 253)
(T - 253) = 269.54
T = 522.54 °C
Increase in temperature = 269.54 °C
Answer:
x-component of velocity: 7.5 m/s
y-component of velocity: 13 m/s
Explanation:
This problem is pure trigonometry. Assuming you know trig, there are only a couple of steps to solving this problem. First, split the velocity into components; recall that any vector not directed along an axis has x and y components. Then, remember that sinΘ = opposite/hypotenuse. Applying this to your scenario, you get sin60° = vy/15. Multiplying this out gives you vy=15sin60. Put this into a calculator (make sure it's set to degree mode because the angle in this problem is in degrees) and you should get 12.99, which you can round up to 13 m/s. This is the velocity in the y-direction.
The procedure to find the x-velocity is very similar, but instead of using sine, we will use the cosine of theta. Recall that cosΘ=adjacent/hypotenuse. Once again plugging this scenario's numbers into that, you end up with cos60 = vₓ/15. Multiplying this out gives you vₓ = 15cos60. Once again, plug this into your calculator. 7.5 m/s should be your answer. This is the velocity in the x-direction.
By the way, a quick way to find the components of a vector, whether it's velocity, force, or whatever else, is to use these functions. Generally, if the vector points somewhere that's not along an axis, you can use this rule. The x-component of the vector is equal to hypotenuse*cosΘ and the y-component of the vector is equal to hypotenuse*sinΘ.
D) If the composition of a sample is fixed, the sample is a pure substance.
Explanation:
A) It can be separated by using physical means, such as filtering.
Of course using physical means as filtration or crystallization we increase the purity of a compound, however sometimes impurities may remain dissolved in the solution or they may co-precipitate with the analysed sample.
B) The components in a pure substance do not have to be in definite ratios.
If the components in a substance do not have definite rations it means the the substance is not pure, it is a mixture of something.
C) If the composition of a sample varies, the sample is a pure substance.
If the composition of a sample varies, it means that different components in the substance are changing so it is a clue that the substance is not pure.
D) If the composition of a sample is fixed, the sample is a pure substance.
If the composition of a sample is fixed, and it can be determined and proven, the substance is pure.
Learn more about:
pure substances
brainly.com/question/1339017
#learnwithBrainly
Answer: The sound will change due to changes in frequency and the wavelength of the airplane.
Explanation: Let assume that the observer is at a stationary position. The wavelength of the sound from the airplane reduces and the frequency increases as the plane is moving toward the observer. As the airplane passes by, that is, moving away from the observer, the frequency starts to reduce while the wavelength of the sound starts to increase.
The sound that the observer hears will change base on the illustration above.