Answer:
(a) adding 0.050 mol of HCl
Explanation:
A buffer is defined as the mixture of a weak acid and its conjugate base -or vice versa-.
In the buffer:
1.0L × (0.10 mol / L) = 0.10 moles of HF -<em>Weak acid-</em>
1.0L × (0.050 mol / L) = 0.050 moles of NaF -<em>Conjugate base-</em>
-The weak acid reacts with bases as NaOH and the conjugate base reacts with acids as HCl-
Thus:
<em>(a) adding 0.050 mol of HCl:</em> The addition of 0.050moles of HCl produce the reaction of 0.050 moles of NaF producing HF. That means after the reaction, all NaF is consumed and you will have in solution just the weak acid <em>destroying the buffer</em>.
(b) adding 0.050 mol of NaOH: The NaOH reacts with HF producing more NaF. Would be consumed just 0.050 moles of HF -remaining 0.050 moles of HF-. Thus, the buffer <em>wouldn't be destroyed</em>.
(c) adding 0.050 mol of NaF: The addition of conjugate base <em>doesn't destroy the buffer</em>
C.) wash hands, utensils, and surfaces with hot soapy water
Answer:
Q sln = 75.165 J
Explanation:
a constant pressure calorimeter:
∴ m sln = m Ba(OH)2 + m HCl
∴ molar mass Ba(OH)2 = 171.34 g/mol
∴ mol Ba(OH)2 = (0.06 L)(0.3 mol/L) = 0.018 mol
⇒ mass Ba(OH)2 = (0.018 mol)(171.34 g/mol) = 3.084 g
∴ molar mass HCl = 36.46 g/mol
∴ mol HCl = (0.06 L)(0.60 mol/L) = 0.036 mol
⇒ mass HCl = (0.036 mol)(36.46 g/mol) = 1.313 g
⇒ m sln = 3.084 g + 1.313 g = 4.3966 g
specific heat (C):
∴ C sln = C H2O = 4.18 J/g°C
∴ ΔT = 26.83°C - 22.74°C = 4.09°C
heat absorbed (Q):
⇒ Q sln = (4.3966 g)(4.18 J/g°C)(4.09°C)
⇒ Q sln = 75.165 J
Lower fertility and longer lifespans steadily increased the potential labor force relative to the total population