Answer:
The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J
Explanation:
Calorimetry is the measurement of the amount of heat that a body gives up or absorbs in the course of a physical or chemical process.
The sensible heat of a body is the amount of heat received or transferred by a body when undergoing a temperature variation (Δt) without there being a change in physical state. That is, when a system absorbs (or gives up) a certain amount of heat, it may happen that it experiences a change in its temperature, involving sensible heat. Then, the equation for calculating heat exchanges is:
Q = c * m * ΔT
Where Q is the heat or quantity of energy exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature (ΔT=Tfinal - Tinitial).
In this case:
- m= 1.30 kg= 1,300 g (1 kg=1,000 g)
- ΔT= 34.2 °C - 22.4 °C= 11.8 °C= 11.8 °K Being a temperature difference, it is independent if they are degrees Celsius or degrees Kelvin. That is, the temperature difference is the same in degrees Celsius or degrees Kelvin.
Replacing:

Q= 64,121.2 J
<u><em>The energy required to heat 1.30 kg of water from 22.4°C to 34.2°C is 64,121.2 J</em></u>
<span>One mol of NaCl (6.02 x1023 formulas) has a mass of 58.44 g. Concept 2. The relation between molecular (formula) mass and molar mass. To obtain one mole of copper atoms (6.02 x 1023 atoms), weigh out 63.55 g copper.</span>
Primitive cells, for example, yeasts and microscopic organisms utilize all sugars a similar way, gave that they can transport the starch into the cell. Huge atoms that can't be transported are separated remotely by compounds that the cells discharge.
All dietary starch must be processed into little atoms previously assimilation. Those little particles are chiral, pivoting spellbound light to one side or left.
These ions are disjoint by the charge on the ion into four dissimilar tables and listed alphabetically within each table. Each polyatomic ion, has it called, chemical, formula, two dimensional drawing, and three dimensional representation are given.
The three dimensional buildings are drawn as CPK models. CPK structures represent the atoms as sphere, where the radius of the sphere is equal to the van der waals radius of the atom; these buildings give a measure up the volume of the polyatomic atom.