Answer:
81 molecules
Explanation:
The reaction between C5H12 and O2 is a combustion reaction and is represented by the following equation;
C5H12 + 8O2 --> 5CO2 + 6H2O
The ratio of C5H12 to O2 from the above equation is 1 : 8.
Aplying the conditins of the question; 24 molecules each of C5H12 and O2 we have;
3C5H12 + 24O2 --> 15CO2 + 18H2O
This means we have 24 - 3 = 21 molecules of C5H12 that are unreacted.
Total molecules is given as;
3(C5H12) + 24(O2) + 15(CO2) + 18(H2O) + 21(Unreacted C5H12) = 81 molecules
Answer: The given statement is true.
Explanation:
When we increase the amount of solvent which is water in this case then it means there will occur an increase in the molecules. Hence, there will be more number of collisions to take place with increase in number of molecules.
Therefore, more is the amount of interaction taking place between the molecules of a solution more will be its rate of hydrolysis.
Thus, we can conclude that the statement increasing the amount of water in which the sugar is dissolved will increase the frequency of collisions between the sucrose molecules and the water molecules resulting in an increase in the rate of hydrolysis, is true.
Answer: A golfer hitting a golf ball.
Explanation:
The atomic particles move more in this option than the others.