Answer:
-100 kJ
Explanation:
We can solve this problem by applying the first law of thermodynamics, which states that:

where:
is the change in internal energy of a system
Q is the heat absorbed/released by the system (it is positive if absorbed by the system, negative if released by the system)
W is the work done by the system (it is positive if done by the system, negative if done on the system)
For the system in this problem we have:
W = +147 kJ is the work done by the system
Q = +47 kJ is the heat absorbed by the system
So , its change in internal energy is:

The Kelvin temperature of a substance is directly equal to the avg kinetic energy of particles of a substance. Hope that is what your looking for
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M