No, it only does when entering an atmosphere
The formula for momentum is mass times velocity. Simply, we just multiply the given values:
p = mv
p = 40 kg x 4 m/s
p = 160 kg m/s
Other units for momentum is N s.
p = 160 N s
Answer:
A) F_g = 4.05 10⁻⁴⁷ N, B) F_e = 9.2 10⁻⁸N, C)
= 2.3 10³⁹
Explanation:
A) It is asked to find the force of attraction due to the masses of the particles
Let's use the law of universal attraction
F = 
let's calculate
F = 
F_g = 4.05 10⁻⁴⁷ N
B) in this part it is asked to calculate the electric force
Let's use Coulomb's law
F = 
let's calculate
F = 
F_e = 9.2 10⁻⁸N
C) It is asked to find the relationship between these forces

= 2.3 10³⁹
therefore the electric force is much greater than the gravitational force
Answer:
1.87 A
Explanation:
τ = mean time between collisions for electrons = 2.5 x 10⁻¹⁴ s
d = diameter of copper wire = 2 mm = 2 x 10⁻³ m
Area of cross-section of copper wire is given as
A = (0.25) πd²
A = (0.25) (3.14) (2 x 10⁻³)²
A = 3.14 x 10⁻⁶ m²
E = magnitude of electric field = 0.01 V/m
e = magnitude of charge on electron = 1.6 x 10⁻¹⁹ C
m = mass of electron = 9.1 x 10⁻³¹ kg
n = number density of free electrons in copper = 8.47 x 10²² cm⁻³ = 8.47 x 10²⁸ m⁻³
= magnitude of current
magnitude of current is given as


= 1.87 A
Answer:
Energy of wave will increase as the energy of wave is related to the amplitude of wave