It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz
Answer:
Final velocity of the block = 2.40 m/s east.
Explanation:
Here momentum is conserved.
Initial momentum = Final momentum
Mass of bullet = 0.0140 kg
Consider east as positive.
Initial velocity of bullet = 205 m/s
Mass of Block = 1.8 kg
Initial velocity of block = 0 m/s
Initial momentum = 0.014 x 205 + 1.8 x 0 = 2.87 kg m/s
Final velocity of bullet = -103 m/s
We need to find final velocity of the block( u )
Final momentum = 0.014 x -103+ 1.8 x u = -1.442 + 1.8 u
We have
2.87 = -1.442 + 1.8 u
u = 2.40 m/s
Final velocity of the block = 2.40 m/s east.
Answer:
h' = 55.3 m
Explanation:
First, we analyze the horizontal motion of the projectile, to find the time taken by the arrow to reach the orange. Since, air friction is negligible, therefore, the motion shall be uniform:
s = vt
where,
s = horizontal distance between arrow and orange = 60 m
v = initial horizontal speed of the arrow = v₀ Cos θ
θ = launch angle = 30°
v₀ = launch speed = 35 m/s
Therefore,
60 m = (35 m/s)Cos 30° t
t = 60 m/30.31 m/s
t = 1.98 s
Now, we analyze the vertical motion to find the height if arrow at this time. Using second equation of motion:
h = Vi t + (1/2)gt²
where,
Vi = Vertical Component of initial Velocity = v₀ Sin θ = (35 m/s)Sin 30°
Vi = 17.5 m/s
Therefore,
h = (17.5 m/s)(1.98 s) + (1/2)(9.81 m/s²)(1.98 s)²
h = 34.6 m + 19.2 m
h = 53.8 m
since, the arrow initially had a height of y = 1.5 m. Therefore, its final height will be:
h' = h + y
h' = 53.8 m + 1.5 m
<u>h' = 55.3 m</u>